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This document constitutes the report on Grant AFOSR-81-0170
for the period from March 15, 1981 to March 14, 1982. The format
under which the report is organized is described as follows.

There were three major and separate research tasks carried out
during the past year under tﬁe sponsorship of Grant AFOSR-81-0170.
These separate research task areas were: optical sub-sampling

for multispectral image data compression; optical/digital hybrid
system architectures for interframe (temporal) image data compres-
sifon; the usage of radiometric and spatial transformations for
adaptive image data compression. Since each of these research
task areas is independent of the others, we have chosen a report
format which emphasizes the independence and makes it possible

to concentrate upon reading about the activity in a particular
topic area with no involvement or conflict with topical material
from another area. Thus, the major research results are presented
in Appendices I, II, and IIl1, three appendices that can te
separated from the rest of the report, if so desired. As such,
each appendix could be considered a "mini-report". Each ap-
pendix has its own introductory section which summarizes the

research objectives of the research reported in that appendix.
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Optical Sub-Sampling for Multispectral

Image Data Compression

Research Objectives

Conventional methods in multi-spectral image data compression
require de-correlation transformations, e.g., the Karhunen-Loeve,
which are very costly in computing. The objective of this task is
to demonstrate that substantial data compression (e.g., 4:1) can
be achieved with little sacrifice in quality. The method is to
under sample each image array of a multispectral system, but with
the sample array of each spectral band staggered or offset so that
sample pixels missing in a given band are sampled in other bands.
The use of the combined spatial and spectral correlation within and
between bands is used to estimate missing pixels and reconstruct
imagery of higher quality than that obtained solely from under-
samplied data.

Appandix Contents:

This appendix consists of a summary of the research in this
area as directly evaluated to date, plus a paper on general
problems in image sampiing which is c¢f relevance to the sub-

sampling which is employed in this method.

L3



This section of the report will review progress on the project

to achieve data compression of multispectral imagery by staggered
array sensor undersampling and subsequent reconstruction of the
original scene utilizing interband redundancy of edge information.
The technique assumes that features possessing high spatial fre-
quencies are similar in all spectral bands of a scene. This will
be true for shadow borders; however, spectrally dependent edges
such as the junction of materially different terrain regions may
be less spectrally correlated.

Prototype solid-state cameras have been constructed which use
similar staggered color (RGB) arrays (1], (2], [3]. The device
in [1] comprises a set of adjoining linear CCD's, each array
being sensitive to only one spectral band. The arrays are de-
ployed in alternating color sensitivity, with elements of each
strip offset from the elements of neighboring strips. Dye-deposi-
tion color filter arrays (CFA's) have been bonded to sensor array
chips 121, [3]. The CFA's are rectilinear masks with repeating
pattern R G; the mask is thus staggered by spectral element but
without Segsor gaps as was the case in [1]. Configurations up to
484 x 384 elements with 34 um x 20 um element size have been
achieved [3]. However, little attempt has been made to estimate
imagery in unsampled bands from data in a sampled band: in [2],
edge information in the high resolution G band was added directly
to the leow resolution P and 3 bands.

The sampling scheme considered in the present research con-

sists ¢f four bands of a muitispectral sensor which are equally
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undersampled, although at full resolution, at staggered intervals

in a scene. The result is a single composite image, a mosaic of
the band samples, having identical spatial dimensions to the original
scene. The four spectral estimates of the scene are then to be re-
constructed in full detail from this single image. The spatial

arrangement of pixels in a four-band image, bands I - 1V, is

2

I Il I Il
ITI 1V ITT IV
I Il I I
IIL IV ITT 1V

A reconstruction window five samples square is passed across the
mosajic image; at each window location, the center sample, plus

estimates of the other three bands formed from the window content,

are written to the corresponding spatial coordinates in four
output images.

The contents of the window may be described by the array:

£ #H S H X

D v 0 v
S # S H S
v o v D vV
X H S H X

whera
S is the band of the central sample,

H is the band of the horizontaily nearest-neighbor sample,




-

IR

V is the band of the vertically nearest-neighbor sample,

D is the band of the diagonally nearest-neighbor sample, and

X positions are ignored.

In each window position the value of S is given, and the
values of H, V, and D must be estimated from the contents of
the window. If E is the general band to be estimated, (i.e., H, V,
or D) then the values S and E may be decomposed into local means and
differences as:

S = S + AS

E=F + AF. (1)
Let us form the estimate E = E + aAS, i.e., we wish to estimate
AE from AS. A MMSE criterion such that <(t - E)2> a minimum will
be assumed. The band images of E and S will be treated as weakly
stationary random variables over the extent of the estimation
window, so that the ensemble averages are replaced by spatial
averages. The coupling parameter o resulting from the MMSE
optimization is

a = pES(cE/US), (2)
where Og and cg are the standard deviations of the £ and S
bands, respectively, and ES js the correiation ccefficient
between E and S, defined by

Cgg = ;éE§§> T (3)
Note that negative values of o account for contrast reversals
oetween bands, and that for 2z = 0 {(uncorrelated E and S bands)

the band estimate is the local mean. If a is correctly chosen

according to (2), then the residual mean square error e? depends

| 4
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on Pgg,

~

g° = oEz(l-pEsz) . (4)
When PEg = A 1, perfect reconstruction is possible; when E and S
are uncorrelated (and when a = 0), then e equals the variance
of the estimated band. The typical situation will fall between
these extremes.

The estimation of the correlation coefficient ppg 2t
each window location is non-trivial. If the E and S band values
of each window element were a priori known (in which case no
reconstruction would be needed), the expectation <AEAS> could be
formed Trom the average product of the £ and S differences at
each element due to the assumption of local stationarity. In
the absence of such full information, an initial approximation
of Cpg May be obtained by averaging the product of interpolated +
values at each window element. The accuracy of the Pes approxima-
tion will then depend on the within-band spatial correlations of
both E and S.
Simuiation

The above algorithm has been used in the reconstructicn
of a demonstration image. The upper left photograph in figure 1
shows the original green band of a tricolor (RGB) 256x256 8-bit ]
digitized image. In place of four distinct bands, the mosaic will
be formed from a sampling array R G , with the R red band in
both positions I and IV. The thgeg associated c maps (G-RI,

G-Ryy» G-B) are included in figure 1 clockwise from the top. A

|
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closeup of the original is given in figure 2, and figure 3
displays the mosaic sensor image.

It is often true that some pairs of bands are more spectrally
correlated than others. This knowledge can be used in forming
the final band estimate. For example, in the demonstration image
bands G-B and bands RI'RIV are such pairs. A post-reconstruction
filter can be devised that replaces an estimatg by its within-

band nearest neighbors average if the local !pSEl is below a

[ threshold and if the local S and E bands are not high-correlation
pairs. The sample array symmetry then guarantees that the nearest-
neighbor within-band estimates were formed from high-correlation

pairs and tend to be more reliable estimates. Thus the best

surrounding reconstruction estimates will supplant a poor estimate.
Figure 4 shows the result of reconstruction of the mosaic-

sampled image of figure 2, after the described post-filtering

with a lpSE( threshold of 0.5. Approximations of pgp were
generated from bilinear-interpolated versions of the mosaic. For
comparison, a direct bilinear-interpolation of the mosaic sampled
original displays considerable blurring (figure 5). Cubic
spline and sinc interpolation results are similarly degraded.

The root normalized mean square error (RNMSE) between the
original and estimate of each band is given in the following

table:
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Demonstration Image - RNMSE R-1 G-11 B-II1 R-1V

Reconstruction,

“true o" maps .02917 .06127 .06590 .02869

Post-filtered version of

above .02822 .05960 .06464 .02773
Reconstruction,
Interpolated p maps .02993 .06235 .06941 .02931

Post-filtered version

of above .02875 .06161 .06842 .02832

Bilinear interpolation .03247 .07286 .07605 .03206
The correlation-reconstructionsare seen to be more accurate than

the bilinear interpolation. The replacement post-filtering,

with a lpSE! threshold of 0.5, makes a small improvement in the

estimation of all bands.

Summary

Test results have indicated that interband correlation is
useable in a simple multispectral data compression scheme whose
only coding is the spatial configuration of the sensor array.

The 4:1 maximum compression ratio for the four-band case does

not take into account any further compression available by the
usual single-band methods, e.g., DPCM. Future research will
consider the effect of the sampling scheme on single-band methods.
The performance of various reconstruction-window configurations,
the treatment of ncnstationarity within the window, and simula-

tions on a more varied selection of imagery will also be examined.

. . ,-‘I i ————————— I.-_I‘--,._. :"j




Figure 1.

Green Sand QOriginal with Correlation Coefficient Maps
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Abstract

This paper is a one-dimensional analysis of the degradation caused by
image sampling and interpolative reconstruction. The analysis includes
the sample-scene phase as an explicit, random parameter and provides a
complete characterization of this image degradation as the sum of two terms;
one term accounts for the mean effect of undersampling (aliasing) and non-ideal
reconstruction averaged over all sample-scene phases; the other term accounts
for variations about this mean. The results of this paper have application
to the design and performance analysis of image scanning, sampling and

reconstruction systems.
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Introduction

In 1934 Mert:z and Gray1 published their pioneering paper on the performance
of a particular line-scan imaging system, television. Over the next 20 vears
this work was extended considerably by Schade2 and otherss’4. More recently
a diversity of line-scan imaging systems have evolved from the application
of digital and electro-optical technology in such areas as space exploration,
remote sensing, reprographics, and medicine. These more recent scanning
systems typically employ electronic sampling and digital {or optical) image
reconstruction and their performance has been analyzed in numerous papers
and texts, for example references 5 through 12. Although various effects
have been considered in these performance analyses, one which is commonly
ignored is that associated with the phase uncertainty of the scene relative
to the sampling grid.

It is well kanown that for practical systems, image sampling and reconstruc-

. . X . . : 12
tion inevitably produce scme degradation in the raconstructed image 7; the
sampling contribution to this degradation is the Moire-like phenomenon known
as aliasing and the reconstruction contribution is a blurring caused by

nigh frequency supression. Aliasing has been investigated for line-scan

e

-

systems both experimen:all;rIJ and theoreticallyld, but the effect of sample-
scene pnase was not addressed. Similarly this phase effect is typically
ignored in studies of various reconstruction filters, e.g., refersnce 13. The
amount and appearance of the image degradation associated with sampling and
reconstruction will change as the sampling grid is shifted acrcss the scene,
i.e., as the sample-scene phase is varied. How does the magnitude of this
degradaticn depend upcn the sample-scene phase? To date a complete analivsis

of this cuestion has rot appeared.




e —

In this paper the one-cdimensional process of image scanning, sampling,

and interpclative reconstruction is analy:-ed in both the spatial and frequency
(Fourier) domain with the sample-scene phase appearing as an explicit,

random parameter. To produce mathematically tractable results in the spatial
domain it is necessary to restrict attention to simplified models cof the
scene, scanner PSF, and reconstruction function. Nevertheless, considerable
insight into the general problem is gained with this spatial domain analysis.
The results obtained in the frequency domain are completely general

with no restriction on the scene frequency spectrum, scanner MTF, or recon-
struction filter. This approach characterizes completely the relation of the
sample-scene phase to scanning, sampling, and reconstruction and provides
several measures of the resulting image degradation which can be easily
evaluated by numerical quadrature. It is demonstrated that although image
degradation due to sampling and reconstruction is present for all practical
systems, its average magnitude can be controlled by a proper choice of scanner
MTF, sampling rate, and reconstruction filter.

Although the results of this paper have general application, the primary
motivation for the research was t. incorporate the effect of sample-scene
phase into zn aralysis of the image degradation due %o sampling and recon-
struction of remotely-sensed multispectral (e.g., Landsat) images. For such
images there is xnown to be (see, for example, refsrence 16) a sample-scene
phase-dependent blurring and apparent location shift of high contrast
features due to sampling and reconstruction. When classifying multispectral
image dati, one is concerned with any blurring and shift in location of edges,

lines, points, etc., since such high contrast features are commonly used as
b ’




control points in the resampling process of registering one image to another,
and even small shifts in control point locations c¢an result in significant

misregistration and subsequent misclassifications

Formulation
Figure (la) illustrates a one-dimensional scene, denoted f(x-u), which
contains a high contrast feature, in this case an edge, at the point u. A

typical scanner PSF, dencted h(x), is illustrated in Fig.(lb) and the Image
g(x-u) = h{x)*f(x-u) (1

formed by convolving the scene with the PSF is illustrated in Fig. (ic}.
The process of image sampling can be represented symbolically as the

product

g(x-u) comb(x) (2a)
. ; . . P 18 - 19 :
where saapling is accomplished by the familiar comb™  (or Shakh™”) function
comb(x) = 2 &(x-n). (25)

o
The spatial coordinate x is normalized in units of sample interval so that

image sampling occurs at the intager locations as indicated in Fig. (ld;. In
this coordinate system u 1is the sample-scene phase parameter; values of u 1
between zero and one indicate the position (or phase) of the scene relative {
to the sampling grid.

- ; : X 12
image reconstruction is commonly modeled as

(V1]
™m
~.s

g.(x;u) = [é(x-u) comb(x}] *T(X) (
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where the interpolation function r(x) is the impulse response of the (linear
shift invariant) reconstruction process. A typical interpolation function
and the resultant reconstructed image gr(x;u) are illustrated in Figs. (le)
and (1f), respectivelv. Equation [3a] can be written equivalently as
=
g.(x5u) = z: g(n-u)r(x-n) -
n=-» (3b)

which demonstrates consistent with the notation g.(x;u), that the reconstructed
image is not simply a function of the difference x-u. Equation [5b] also
illustrates (along with Fig., (1)) that, for a fixed x, the extent to
which neighboring image samples, g(n-u), contribute to the reconstructed
image is determined by the spread ¢f the interpolation function. For digital
. . . .. .20 ;
image reconstructicn (sometimes called resampling™ ), computatiocnal
considerations dictate that this spread should be small; typically r{x) is
identically zero for !x{ larger than 2 or 3.

Scanning produces an image (Fig.(lc)) which is a blurred (i.e. smoothed)
copy of the original scene (Fig. (la)); similarly, subsequent sampling and
reconstruction produces additional blurring in the reconitructed image
(Fig. (19)). Thus to study the blur (i.e., the square of the radiometric error)

present in a reconstructed image it is convenient to define *wo gquantities

- 2
image blur = a-’i = [i(x-u)-g(x-u)] dx (1)

and

9
“-

-0
, ; | . .
sampling and reconstrugticn bHlur = séa(u)= : [é(x—u)-g'ix;u)] éx,
J -

These two quantities are associated with (but not equal to) the shaded arsas
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indicated in Figs. (Z2a) and (2b); s% and ng represent the energy of
the differences f(x-u)-g(x-u), and g(x-u)-gr(x;u), respectively. How do s%

2

and SR depend upon the sample-scene phase parameter u? For e% the answer is

1 . 2 . .
: obvious, for ==, it is not.
: SR

Image hlur (Eq. [4]) is an inevitable but well understood effect caused

solely by scanning the scene with a non-ideal (i.e., non-impulsive) PSF. Image
blur is independent of the sampling and reconstruction process and

changing u merel causes the scene and its image (Figs. (la) and (l¢)) to

shift together aleng the x-axis without changing the energy of their difference.
Thus image blur is independent of sample-scene phase. (This conclusion can be
verified mathematically by the substitutien x' = x-u in Eq. {4].)

Sampling and reconstruction blur, denoted SR blur (Eq. [5]), is just as
inevizable as image blur; however, unlike image blur, the amount and appearance
of SR blur depends upon the sample-scene phase. Unfortunateiy, SR blur is
not nearly as well understood as image blur, even if the sample-scene phase
effect is ignored. To think of SR blur as just aliasing is to ignore the

effect of imperfect reconstruction; to think of SR blur as just interpolation

(or resampling) error is to ignore the effect of undersampling.
-l ! > 2 : . N
In this paper the dependence of sgg UPon sampling, reconstruction, and
sample-scan2 phase is analyzed. In addition, eéR i3 statistically character-
ized in terms of its mean and variance by considering an ensembl2 of scenes
f(x-u) with u as a random phase parameter uniformly distributad Setween zero

and one. The importance of this stochastic approach is that frequently in a

Teal scene with many high contrast features, the sample-scene phase o

re,

each

is random and equally likely t2 be any number hetween z2ro arnd ene. lcnsequentiy,

— st V. M
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in a reconstructed image of this scene the SR blur associated with each

high contrast feature must be analyzed as a random variable.

U

patial Analysis: Example

|

It is illuminating to analy:ze a particular image scanning, sampling, and
reconstruction system in the spatial domain because the analysis is dirsct

(although algebraically cumbersome) and the results are easily verified by

digital simulation. Specifically, consider a scene Z{x-u) which is an

edge (i.e., 2 step of wnit height) at the location u
1l x2u
f(x-u) = step(x-u) = . (6)
0 otherwise
Equation {6] provides an important scene model for remote sensing applications

since many images of interest are agricultural or urban and dominated by edges.

If the scanner PSF is an ideal aperture of unit response and width s, i.e.,

1 ! S
hix) = %:‘ect <§)= S - (M
0 otherwise

then the resultant blurred image of the edge is a ramp of width s and unit

height, centered at u, i.e.,

\,\
Pad —
~
v
[
+

[

3)

g(x-u) = h{x)=f(x-u) =

”

[}

[+

[
tijon

(=]
-~
A
=4
'
tajn

In the coordinate system of this paper, the parameter s T2presents the
instantaneous field of view (IFJV) of the scanning aperture in units of sample

s

o

interval., From E3gs. (4], [8], and [3] che image blur in this srecia: :ase

S —
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1
17

s

e
w
~er

-y

and therefore increases linearly with IFOV.

In a discussion of image blur, s should be interpreted as the scanner

IFOV. However, in a discussion of SR blur it is more appropriate to interpret
s as the number of samples per IFOV, Thus, for example s = 1 corresponds to

a sampling rate at which consecutive IFOV's are just contiguous while s = 2
corresponds to a 50% overlap in consecutive IFOV's. Most image scanning
systems cperate with a sampling rate in the range 1 < s < 2; for mathematical
simplicity s is restricted to this range in all the subsequent spatial

domain analysis.

Sampling the ramp image (Eq. {8]) generates image samples g(n-u) which are

- —

all zero for n ¢ -1 and all one for n 2 2. The dependence of the
two remaining image samples, g(-u) and g(l-u), upcn the parameters s and u
can be determined from Eq. {8]. This dependence is illustrated in Fig. (3).
For u less than 1 - 0.5s, g(-u) = 0.5 - u/s and g{u-1) = 1; for u between
1 - 0.55 and 0.3s, g(-u) = 0.3 - u/s and g(i-u) = 0.3+ {1-u)/s; and for u
greater than J.S5s, g(-u) = 0 and g(i-u) = 0.5 + (l-u)/s.

If image reconstruction is accomplished 5y linear interpciation, the

1ssociated interzclation funcetisn (see Fig., (le); is

(x) = tri{x) = ! . (19)
’O ctherwise

Figure (4) illustrates <he resuiting reccns:iructad 2dge image as well as th

original edgs and its image. The shaded areas in 7iz. (4b) correspond 2o the
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SR blur that arises when 1 - 0.5s < u < 0.3s. Figures {d4a) and (d¢)
correspond to the other two possibilities, 0 < u ¢l - 0.5s and 0.5s s v ¢ 1,

respectively. It can be shown that the dependence of SR blur upon s and u is

(¥4]

L [(s-2)2 (2420532 + (s-2u)2(2- 7u-s)2] O<usgl-0.5s

48s-~

1 ~
efp(u) = {—g-r [(s-2u)2(2+2u-5)2 + (s+2u-:)—'(4-zu-s)2] 1 -0.55 <u<0.5s

1'8_57 [(s-"u)z(’-"m»s)- + (s+2u-s)* (4--u-s)2] 0.5 s ugl
(11
\
As Eq. [11] indicates, géR is non-negative for all 1 ¢ s ¢ 2 and 0 ¢ u g 1.
Figure (S) depicts curves of eéR versus 2 for various values of s.
Notice that ng is symmetric about u = 0.5 and that the shape of these curves
depends dramatically upon s; for s = 1 the curve is bowl-shaped with maxima
at u = 0,1 and 2 minimum at u = 0.5, for s = 2 the curve is bell-shaped with
a maximum at u = 0.5 and minima at u = 0,1. Equation {l11] can be thought of
as a transformation, with parameter s, of the uniformly distributed random
variadle uy into a new randeom varizble ;%R. The resulting probability density
function (pdf) of ng nas a very unusual shape, as illustrated in Fig. (6) for
the cas2 s = 1. The pdf is U-shaped indicating that the extreme values of
SR blur are significantly more likely than the average value! The shape of
the pdf for other values of s is similar.
Since u is uniformly distributed, the averages value of SR Slur is

Fe2 ] b2 en
Elese) = L f5R% {12)
and the variance is
.- 2
. i -
vaz[sle] = ) SRR (133
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The variance is a measure of the extent to which s%R cdepends upen u anc the
affect of sample-scene phase dependence is negligible if and only if vVar[%%R]
is much less than E[%%R]. For example, from Fig. (5), this effect is negligibdle
if s = 1.5 but not if s = 1.

-

e el ’ 2 - . .
The dependence of “["SRJ and \ar[eSR] upon s can be determined algebraically

from 2qs. [11], [12] and [13]. Specifically, it can be shown that

EE:%R] = 1%:_— l1¢<ss?2 (i
a surprisingly simple result which has been verified by digital simulation.
Equation {14] illustrates that for an ensemble of edges, each blurred by
scanning with an ideal aperture, sampled, and reconstructed with linear
interpolation, scme SR blur is inevitable; this blur can be reduced by
increasing the sampling rate, but it cannot e eliminated.

Unlike Eg. {14], the algebraic expression for Var[?gR] is too cumberscme
to have practical value (it is an eighth degree polvnemial in s divided by sk).
Instead, we present a plot of SR blur variance versus sampling rate, Fig., (7).
This variance changes by three orders of magnitude cver the Trange 1 ¢ s ¢ &

and a pronounced minimum occurs at a sampling rats of 1. IFov.
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It should be emphasized that the previous analysis is valid only fer
1< s¢ 2. Intuitively, the average SR blur will continue to decrease in
the ragion s > 2 but not necessarily at the rate indicated in Eg. [i4). For

small sampling rates, s < i, it can be shown that
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Fourier Analvsis

In order to include the sample-scene phase effect into the performance
analysis of a general image scanning, sampling, and reconstruction system it

is necessary to formulate the problem in the frequency domain. In the usual

mannerls’lg, we denote two functions F(x) and ;(v) as Fourier zransform
pairs pe

F(x) ~— F{v) (16a)
rrovided

- poo o :

Fv) = | F(x)e d™™1l gy (16b)
and -

b N 4
F(x) = F Flv)el™VT gy | (16¢)

Since x is normalized in units of sample interval, the frequency coordinate v
nas units oI cycles per sample interval. In this coordinate svs:tem the Nvguist

(er Tolding) frequency is 0.3.

From Eqs. (1], [2], and {3] it follows that

. F o ocaruii -

f{x-u) = e ° g (173) 7
-27uvi ° P ry s

g(x-u) =— 27TV (£ 17b)

and

- a

- -
~2nul{v-n)i -
gr(x;u) — () 2: g TETULY n)i h(v=-n)f(v-n)

=
e
-8
O

~

where £(v) is the (zero pnase) scene frequency spectrum, nh(v) is the scanner

OT?, r{») is the reconstruction filter (i.e., the Fourier transform of th

4]

. - g

1 interpoliaticn function), and as before u is the {random) sampl2-scen

@

Phase

(7
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parameter. Equaticns [17a] and [17b] are immediate consequences of the shif:
and convolution theorems. To derive Eq. [l7c], the convr’' ~-ion theorem applied

to Eq. [3a] yields

g (xiu) <= {[e‘”“"i B(v)‘f(v)]«comb(v)} T (18)

a result which uses Eq. [17b] and the fact that the comb function has the
curious property of being its own Fourier traqsformls. Convolution with
the comb function in Eq. [18] produces the image spectrum replication in
Eq. [17c]; this replication is the inevitable result of sampling.

In the previous spatial domain analysis the scanner PSF (Eq. (7]) and
interpolation function (Eq. [10]) were normalized to unit area. That
normalization is used throughout this paper; in the frequency domain

it means that at zero frequency

»0

h{0) = h{x)dx = 1 (19a)
and o
r(0) = J r{x)dx = 1. (19b)
Parseval's theorem applied to Eqs. (4], [17a], and [17b] yields the
image blur, i.e.,
o -
€3 = | [1-n () [2] () | 2dv (29)

which illustrates (again) that image blur is independent of sample-scene

phase. If the scanner PSF is an impulse, then h(v) = 1 for all v and image

blur is zero for all scenes. For all practical PSF's the condition A{y) = 1 i

S —
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can not hold for all v; at high frequencies ﬁ(u) approaches zero. As Eq. [20]
indicates, the cause of image blur is the presence of significant scene
energy, Z%(v)!z, at frequencies where h(v) # 1.

An expression for SR blur analogous to Eq. [20] can be obtained from
Eqs. [5], [17b] and [17c]; however a somewhat different approach is preferable.
This approach is based upon the observation that C%R is periodic in u with

period one, and thus

-]
2 g = °2’:un‘l
tgpiw) m§jm~ (21a)

du. (21b)

The coefficient a, has particular significance; it is the average SR blur,

i.e., from Eq. [12]

2 = s

E[QSR] a,) . (2-/

In addition, it follows from Eqs. {13] and [lla] that SR blur variance 4
is

bl
/ 2 = 7? ' 12
"”[Esa] K~ U (23)

In general for m # 0 the Fourier coefficients are complex. However because
€2, is raal, thev satisfy a = a* form = 1,2,3... whers {-)* denctes
SR ’ -m m
complex conjugate.
The explicit dependence of the Fourier coefficients (and thus Ef:

3

var [géR]) upon the scene spectrum, scanner CTF, and reconstruction filter can

_ — I““...................-.-.--lllllllllillllllil;:‘}
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be determined bty first recognizing that, from Egqs. [17b] and

F twi < ° > p Zwuni
g(x-u) - g (x;u) ~ ¢ 2muvl 2: (5 -r(v))h(v-n)f(v-n)e Tan1
T n
Nz (24)
where in the summation én =1 ifn=20 and 5n = 0 otherwise. A combination

of Parseval's equation, Eqs. [S5], [21b] and [24] yields an imposing looking

expression for a

n T {:nf%, agix <5n';(”))(53‘;*(v))A(u-n)ﬁ{w-ﬁ)%(v-n)gkv-ﬁ)

I

x f g-2ru(m-nmi 4 1 4, (25)
0

Fortunately, because of the integration with respect to u, the only ncn-:cero

terms in the double summation are those for which n-n = m. With some

mathematical manipulation, which is omitted for brevity, Eq. [25] can be

reduced to its simplest form

1y e o o Ee (]
B = 3 -T(v)-T*(v-m) + 2. Ir(v-n)|?h*()h(v-m)£* () £(v-m)dv

n=-»
-
(28)
In summary, for a general image scanning, sampling and reccnstruction

svstem the image blur is given by Eq. [20] and the SR blur is given by a

efficients

o

Fourier series (Eq. [21a]) in the random phase parameter u with ¢
given by Eq. [28]. The mean and variance of SR blur are given ty Eqs. [I2
and [23]. All of these quantities can be calculated by numerical juadrature
srovided values of the scene frequency spectrum %(v), the scznner OTF &(v},
and the interpolation filter ;(v) are available.

As an example of this Fourier analvsis, if the scene is an edge (Iq. .6]),

the scanner PSF is an ideal aperture (Eq. (713, and the intavpolation Junzstion

| nmt—




is linear (Eq. {10}), then

oy o Lo 1
)= E-o(v) > i2my
h(v) = sinc(sv)

and
r(v) = sinc?(v).

It can be shown that the associated image blur is

0

2 o | Il - sinc(sv)]? &
I J 4712,,2
and the SR blur is
egR(u) = E[ gR]+ 2 z%. a_ cos(2rmu)
where
n = :, i bl 2
E[s‘ ] = Ir 1 - 2sinc?(v) + L sinc*(v~n) sinc(sv) dv
SR ) 2,2
‘. n=-= 4y

and where the Fourier coefficients are real and given by .

an
'

x
a, = j [- sinc® () ~ sinci(v-m) + 3 sinc“(v—n)]

-0

==X

sinc(sv)sinc(s (v-m)] &
415y (v-m) ’

Because of the singuiarity in the edge spectrum (Eq. [273]) at v = 0, some caution

{29b)

(29¢)

must be exercised in the numerical integraticn of Egs. [28], [29b], and [29c].

However, the singularities in the integrands are removable and present no

fundamental difficulties.

—
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SR Blur
Considerable insight into SR blur can be cbtained without resorting to
numerical simulation. In particular, from Egs. [22] and [26] the average
SR blur is given by
E {el = { e2 (W) [h(v)£(v) {2av (30)
SR ]
where e2(v) is the non-negative function defined by
oA b -
ef(v) = 1-2R[r:)] » X ‘r-n)l? (31a)
nN==c
= 1.2+ 2 lre-m? (31b)
: n#o

-
“~

SR

negative random variable, it is identically zero if and only if its mean is

and R[+] denotes the real part of a complex variable. Since ¢ is a non-

zers. From Eq. [30], E[?%R] = 0 if and only if the integrand is identically

zero for all ». In other words, for a general image scanning, sampling and

reconstruction svstem some SR blur is inevitable unless

e®) 'afE)! = 0 (32)

for all v,

For a well designed scanning system it is common to use electronic

filtering prior to sampling and thereby shape the scanner MTF, [h(v)}, so that

ot

he image spectrum is band-limited, i.e.,

> PYAE .n

[h(v) £(v3] =0 (33)

for all || > »_. For such a system, Eq. [32] will be satisfied at high
frequencies. However, below the cut-off frequency, »_, Eq. :32] can be satisfied

cniy by chocsing the reconstruction filter r(v) so that ez(v} is zero.




Wnat choice of reconstruction filter will satisfy the equat

s
e-v) = 0 s fvf <y

for all |v] ¢ v.? Because of the first term in Eq. {31b], r(v) must be one for
low frequencies; because of the remaining (side-band) terms r(v) must be zero
for high frequencies. In fact, in terms of Voo the solution of

completely charactsrized as follows. If v, > 0.5, Eq. {34] has ne solutionm,

and if v, € 0.5, the only solution to Eq. [34] is

1 .vi < v
c
Tv) = arbitrary v < 'y ¢ 0.5
] -
0 vipo> L.,

~

This discussion establishes what amounts zo a sampling theorenm

general image scanning, sampling, and recons:iructicn svstem. Namely, there

is no SR blur (Ea. [53]) if and onlv if all the following are true:

ion

(34)

Eq. [34] is

N
wm
o

>3

for 2

(i) the image spectrum is band-limited;
(1i) the cut-off frequency v _ is 0.5 crcles pex
-
'
L

(iii) the reconstruction fil<er satisfies Eqg.

Condition (iil) represents the Nvquist criteris for s

=
H,
*
[ 2
e}
e
[
19}
t
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e
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3
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d2termines an upper bound for the sample interval size., <Conditions (i) anid

(1ii) are ideali:zations; a truly btand-iimited image specirum is

[S]

assume but difiicult to achieve and 211 finite .idth reconstruct

are 'non-ideal,” i.e., they do nct satisfv Eq. [35). Thus, for
systems some SR blur is inevitable.

There are three effects which contri

struction, aliasing, and sample-scene pnas2 dependence. T2 se20
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=2 = rf-2 2rumi
°SR(u) El: + E: ae . (36)

23 . . .
From Egs. [30] and Blb], E[%é ] can be written as the sum of two terms, i.e.,

R
o2 = 2 L. 22 37
E[‘SR] R * s (57a)
where
2 [ 1a_s re oy p 12 I
o= | Te)E TRG)Ee) 2 (370)
and -
. _ 1 - PRCUN
~ e ~ - Y
€3 = | [ 2ir-n)!2f Th(v)f(v){dv. (37¢)
‘o LOFO
-
The term sa accounts for imperfect reconstruction; it is analogous to image
blur, Eg. [20], and it measures the .contribution to SR blur caused by the

presence of significant image energy, Ih(v]f(v)[z, at frequencies where r(v) # 1.
The term ;g accounts for aliasing due to undersampling; it measures the
contribution to SR blur caused by the presence of significant image energy

at frequencies where the energy in the reconstruction filter side-bands,

S 12 . . . Cont s . 14

2 lr(v-n)!2, is not zero. An equivalent, but more familiar expression

]
n#0
for <2 follows from the identity

n#d n#o

(M -D

add ~ - ~ [ N N N
-:§=' [Z_Ir(u-n)'é th)EW) 2dv = )' fr)12] 2 Ih(v-n)Ev-n)!2 [dy, (37d)

Equation [37d] demonstrates the duality between side-band energv in the recon-

2
S

and correctly account £or the sample-scene phase-averaged effects of imperfect

(U]

struction filter and image spectrum., Both aa and are independent of u

reconstruction and aliasing.

From Eqs. [36] and [3~a], S%R can be written

~~
(2]
[7.7]
(4]

st

<

(u) =ed =+l + (W

Wt

n
n
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where

- . bd
T <mumi - Zrumi
o(u) = a 2 ngE.e ] . (38b?
m#O m = m

{3
1
J

The term $ is the sample-scene phase dependent contribution to SR blur;

it is a real valued random variabiz with zero mean and variance 2
m=]
Phase dependence is zero if and only if a = 0 for all m=1,2,... . For

He~18
(Y]
=

a particular system this phase dependence is best investigated by numerical
simulation using Eqs. [26] and [38b]. However, one condition sufficient to
guarantze that 3 = 0 can be obtained by inspection; the intazgrand in Eq. [26]
will be zero for all v if the image spectrum is band-limited with the cut-off

frequency less than 0.5. That is, sufficient sampling of a {(tzulv) band-

limited image will eliminate the sample-scene phase dependence in SR blur.

Of course, some SR blur will still be present unless the reconstruction filter

satisfies Eq. [35].

U

An inspection of Eg. [27] reveals why the example considered previously
in the spatial domain analysis exhibited a non-zero, phase dependent,
SR blur for all sampling rates, s; the image spectrum is not band-limited

and the reconstructio. filter is imperfect. For this example both

- {w - rsinc(<“) 12
2 = {1-sinc2 ()2 — dy {39a;

R ) -

-0
" and
e sinc(sy) ]2 ( 300)
[n#o- -
-
are positive for all s. In additicn, it can e verified nunerically {using

Eqs. {23] and [29¢]) that Var[}ip] » Q and thus the thase dependence, :(u),
becomes small, but does not disappear as s becomes largs. See alse Fig., (™)

wnich iliustrates the mgnitude ¢f this shase derendence




Reconstruction Filters

To summarize scme of the previous discussion, Eq. [31t] defines e- (V)
in terms of the reconstruction filter r(v). As Eq. [30] reveais, the cause

of SR blur is the presence of significant image energy at frequencies whers

e2(v) is not zero. Just as the scanner CTF can be interpreted as a pre-

. » . . 1 p
sampling filter acting upon the scene Wiener spectrum, ' £(v)'2, to produce

,

image blur (Eq. [20]), the reconstruction filter can be interpretzsd as a

post-sampling filter acting upon the image Wiener spectrum, {h(v)f(v)!2, to
produce average SR dlur (Eq. [3C]). In other words, !1-h(v)|° is to image

blur as e2(v) is to average SR blur. It should be emphasized that e?(v)

is not just [l-r(v)!%; sampling causes the appearance of the side band terms

Z:’r(v—n}fz in Bg. [3ib]. If r{x) is the ideal interpolation fiunczion sinc(x),

2rect(v). What doss e2(v) look iike for
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some common (non-ideal) reconstruction filters?

Taple I lists the characteristics of three commorn digital interpeclaticn
functions, nearest neighbor, linear, and cubic and the ideal interpolation
function, sinc. There are actually several variants of the cubic interpolator
in the literature, each derived as a1 finite-width approximaticn to sine{x);

2 \

the form we nave chosen is due to Bernstein®". Figure (3) is a plot of &2 ()

"y

versus v for the four interpolaticn functions. A comparison of the ralative
maZnitude of the four curves in the region 0 s v < 0.5 yields the conclusion

that for any tand-limited and suffisientlv sampied image: i) the ideal
) b g p

interpolator causes no SR blur; (ii) of the three ccmmon digital in<erpciation
functions, cubic causes the least SR blur and; {iii) nearest neighbor inter-
polation causes the most SR blur. (Unrortunately, it is necessary

bl

to qualify conclusion (ii) “ecause ¢ the small hump on the cubic surve at low

. -
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frequency. It would be mathematically possiblc to construct a band-limited
and sufficiently sampled image, with virtually ail its energy at . = (.05,
for which linear interpolation causes slightly less SR btlur than cubic.)

Since the e2(v) curves cross above the Nyquist frequency (0.5), if the image

is not band-limited and sufficientlv sampled, conclusions (i), {ii), and (iii}

are not necessarily valid., In fact, in this case conclusion (i) is invalid

and the ideal interpolator may cause more averaje SR blur than some of the
others!
The example we have considered throughout this parer--edge reconstruction--

has an image spectrum which is not band-limited. For this example the average

SR blur is
o . A
E[e"] _{ e2ry) sincl(sv) i (30)
=t - ] "y , ]
SR j dreys
-0
- fad -~
where e2(v) is given by Eq. [31] and the terms rf.) and 2. !r(v-n)!2 are listed
n=z -
in Table I for each interpolation function. Equation [40] has been evaluated

-

numerically for various values of the sampling rate, s, and the results are

illustrated in Fig. (9). Of the three common digital interpolators, nearest

neighbor is clearly the worst choice (as expected) and cubic is the best
choice except at low sampling rates, s { 0.6. In this example, when s is
less than 0.3, the image spectrum has so much energy abcve the Nyvgquist frequency

ther

[N

that the ideal interpolator actually causes more average SR biur than e

linear or cubic. In fact, cubic causes less average SR blur than sinc for

values of s as large as 1.1.

Table I lists, for =2ach interpoclator, a closed form expression for the
fad "
e me s . ' 312 . R - . . -
infinite series ‘r(v-n);~. This expressicn can he used to simpliiy
na-»

considerably the numerical evaluaticn of 227,) 3ad is based upen the identicye

_—_——_—_——_———A
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= - ;-]

T rwen)'? = (rvr)(0) ¢ 2 Y (rer)(n) cos(lmnv) (41)
n=-x n=l

Equation [41] is valid for any interpolation function provided it is even,

i.e., r(x) = r(-x) for all x. For all practicai interpolaticn functions,

(r*r)(n) will be zero except at small n and the infinite series in Eq. [41]

can be esvaluated in closed form. The validity of Eq. [41] follows from the

observations that if r(x) is even, r(v) will be real, r(x)*r(x) will be even,

and
3 rvem)|2 = r2(u)* comb(v) = Y (rer)(m)e VL. (12)
Nns-m» n=e»

The last equality in Eq. [42] can be verified by taking the Fourier transform
of each side. In Eqs. [41] and [42], (r*r)(n) represents r(x)*r(x) evaluated
at x = n.

The assumption that the interpolation function r(x) is even is not restrictive;
it is difficult to imagine any situation in which r(x) would be constructed
otherwise. It can be shown that if r(x) is even, then ), 2:};(v-n)iz,

n
and e2(v) wiil all be even functions of v.
Discussion

The emphasis throughout this paper has been on an analysis of the degradation,
séR(u), caused by image sampiing and reconstruction. The analysis is unique in
that it includes the sample-scene phase as an explicit, random parameter.

Results established in the frequency demain provide a complete characterization
of sga(u) as the sum of two ternms, EE::SR] and 4{u). The first term accounts

for the mean effect of sampling and reconstruction averaged over all

R W1
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sample-scene phases, the second term accounts for variations about this mean.
If the image is band-limited and sufficiently sampled, the variations about the
mean are suppressed, i.e., ¢(u) = 0, If, in addition, the reconstruction
filter is ideal, the mean is zero and SR blur disappears.

Table II is a logic flow diagram which summarizes the results of the
frequency domain analysis. To avoid unnecessary clutter in this diagram, cnly

a band-limited image is considered and the notation

glv) = hMWEfM) (43a)
vesm o= T ireem 2 - T0) - Treem) (43b)
N==x

is introduced to simplify some equations. Since all spatial and frequency
variables in this paper are referenced to a coordinate system in which the

sample interval has unit length, all frequencies (v) in Table II have units of

cycles per sample interval and the Nyquist frequency is 0.5.

To better understand the results of this paper, it is important to
appreciate the inverse relation between the parameters Ve and s. For a genera
scanner PSF (not just an ideal aperture, Eq. [7]), s represents the width of

the IFOV relative to the sample interval or, equivaiently, the number of

samples per IFOV. Just as s is proportional to the effective width of the
scanner PSF, the cut-off frequency, Ve is proportional to the effective
width of the scanner CTF. Because of the scaling property of Fourier transform

pairs, it follows that

SV = constant, (34

(]

— e d
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Thus, for example, reducing the cut-off frequency by 50% is eguivalent to deubling
the sampling rate.

From Eq. [30] it can be seen that, for a fixed sample interval size, there

are two ways to reduce SR blur. One way is to shape the reconstruction filter
so that e® (v) is small at those frequencies where !a(v)%(v);z is large. As
Fig. (8) indicates, this technique of post-sample filtering can be quite effective,
but only if the IFOV width, s, is large enough so that ve < 0.5. Reducing SR
blur by shaping the reconstructicn filter does not effect image blur. The other
way to reduce SR blur is to shape the scanner MTF so that iﬁ(v){: is small at
those frequencies where ez(v)!%(v)!2 is large. This technique of pre-sample
filtering definitely does effect image blur. In fact, there is a trade-off:
reducing SR blur by shaping the scanner MTF inevitably increases image blur.
Figure (9) illustrates the trade-off between image blur and SR blur in the
special case of an edge scanned with an ideal aperture. For a fixed sample
interval sicze, as s increases the IFOV is broadened, the effective cut-off
frequency is reduced, and high frequencies are suppressed. The result is an
increase in image blur and a decrease in SR blur.
Finally, it is important to note that the total blur (i.e., the square of
the total radiometric error) associated with the entirs process of scanning,

sampling and reconstruction is

'P'I)

€2(u) = [£(x-u) - g_{x;u)]2dx . (45)
- .
This saaple-scene phase dependent blur is not just the sum of e% and ng(u)'
However, from the triangle inequality, it £allows that
. .
s2(u) < e} - egR(U) (d6a;]
ar <
- ) A P
JE 15 i+ e[e3:]) (460)
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Thererfore, the results of this paper can be used directly to establish an upper

bound on =2 and E[e?].




(a) SCENE: f(x-u)

L . L ._F (3 d ._L'__’ X
-2 -1 0 wu ! 2 3
(b) PSF: h{x)
I FoV
+ } t o } -t x
-1 -2 0 1 2 3

(c) IMAGE: g(x-u)

+ + it } + > X
-2 -1 0 wu 1 2

L d
(d) SAMPLED i

IMAGE: g{x~u)comb(x} ,*
’

-
..;-_- -;; { ? : ' e x
-2 -1

0 ] 2 3

(e) INTERPGLATIOM
FUNCTION: r{x)

-2 -1 0 1 2 3




(a) I1MAGE BLUR

[ %)

Fig.




47

—
3
1]
o~
~—

o

g(-1-u)

o X

Fig.

e e e el




48
---------- ORIGINAL EDGE
RECONSTRUCTED S —a-
T IMAGE g (x;u)
= == = |MAGE g(x-u)
e IMAGE SAMPLE
u
. VI 1 ! }
g { L4LLeR2l, W L 1 .
-1 0 1-0.5s 0.5s 1 2

-1 0 1-0.55  0.5s | 2
1
[}
4
] B
}
1
1)
u
, Imasarst —
- 0 1.05s 0.5s 1 2
Fig. 4.




49

Edge Reconstruction with
Linear interpolation 1.0

Fig. 3.

I~




50

- U

0.75

0.5

c.25




e v T v -

31

| OE-41
| OE-5|
2
Var &gz |
|.0E-&}
| OE=7 L L ! ' d
.0 .2 .4 .6 1.8 2.0
S

Fig. 7.

S —————




nearest
neighbor

linear
cubic

sinc

2.0

1.0




0.10

0.05

0.02

0.01

0.005

g.oc2t

A
~

~

Fig. 9.

NEAREST
NEIGHBOR

LINEAR

cusic

SINC

53




54

01¢
(nu9)s0dg+ (nul)sod4E-(anZ)S0215+061

¢
(nuz)soz 4+ 7

ez

RICEE

()4 “4ILT14 NOILINYLSNOITY «—s (X)4 *HOILLINAS NOILVICIYILINY

‘roquitou 3ssaeau

*ouls ‘aojejodiojul [eopr ayl pue ‘orynd ‘awdurd

‘SUOL3IOUNJ UO[IDNIISUOIAX [eIITip Uowmod 21y JO SITIS{IIIORINY)

Toargey,

z{on)
(n) 31294 ~(7i3) () gouts (n)ours (a)4
(nug)sod AES 9-(afy)outsz+(ag)ouys v
((x)ouys) S IMa3YJ0 0 ((x)143) ((x) 2221)
” Zs _x_ s NA_x_ - N:_x_ - 1) as |uayjo 0 asmiaylo 0 (%)
Xgjuls
e U el el ez - el - S0 ¢
INIS Jrend LAELT R HOGHI | IN
LSIYVIN




55

Table II. The calculation of SR blur. The image spectrum, g(v), is
assumed to be zero for all [v| > v..

INPUT )
SCENE SPECTRUM f(v)

SCANNER OTF h(v)
CUT-OFF FREQUENCY v_. (CYC/SAMPLE INTERVAL)

(
RECONSTRUCTION FILTER F(v)

l I

CALCULATE BAND LIMITED IMAGE _ {ﬁ(v)?(v) vlgve
0
|r

SPECTRUM g(v) otherwise
e?(v) = 1-2R[r(v)1+]| r(v-n)]|2
n

vivim) = JIr(v-n)[2-F(v)-F*(v-m)
I8

e%R(u) = E{5§R1+¢(U)

1S
vc < 0.5
(SUFFICIENT

SAMPL ING)
?

DOES edo = €1edo

r{v) bosn

£3 SATISFY ] Ve )
Y 1 122 1 = 200 12 4
=Cga. (35] (IpeaL Slegp) =, et (vl glyifay

FILTER) -
? o
(4 (u) = 0)
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The image scanning, sampling, and reconstruction process.

Fig. 2. (a) The blurring introduced by scanning. (b) The additional

blurring introduced by sampling and reconstruction.
Fig. 3. Ramp image sample dependence upon the sample-scene phase parameter.
Fig. 4. SR blur dependence upon the sample-scene phase parameter. Three
distinct situations are depicted corresponding to (a) Oc<u<l-0.5s,

(b) 1-0.5ssu<0.5s, and (c¢) 0.5<uc<l, respectively,

Fig. 5. The dependence of SR blur upon the sample-scene phase parameter.
The curves correspond to s5=1.0, 1.25, 1.50, 1.75, and 2,00, respectively.
For s=1.50, agR is nearly constant.

Fig. 6. The probability density (vertical axis) of eéR for the case s=1.
The extreme values of ¢2_ are significantly more likely than the

SR

average value, E[szR].
Fig. 7. SR blur variance versus sampling rate (samples/IFJV) for edge recon-

struction. .

Fig. 8. The functicn ez(v) for three common interpolators, nearest neighbor,
linear, cubic and the ideal interpolator, sinc. The insert Illustrates
the small hump at low frequencies for cubic.

Fig. 9. Average SR blur as a function of sampling rate {samples/IFOV) fer the
interpolators, nearest neighbor, linear, cubic and sinc. Tae

image is an edge scanned with an ideal aperture.
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Optical/Digital Hybrid System Architectures

for Interframe (Temporal) Image Data Compression

Research Objectives

Interframe data compression with optical computations has
been demcnstrated under previous support of AFGSR. Interframe
data compression nas proven more elusive, principally because c¢f
the complex logic operaticons required in interframe comparisons.
The objective of this research is to demonstrate that architectures
for interframe compression can be conceived which combine computa-

tions appropriate with digital processors.

Appendix Contents

The contents c¢7 this appendix consists of a review of the
general problem of interframe compression plus a proposed
architecture for an optical/digital system for same, plus a paper

demonstrating the results achieved in simulations of one such

method.
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I. INTRODUCTION

A hybrid optical/digital system architecture has been shown in previous

research to be a feasible and viable approach to interframe coder design

[1,2]. One of the definite advantages cf optical computation over digital

computation is the speed and ease of frame differencing in terms of the

inherent image-plane—to-image-plane parallel processing. The temporally

adaptive hybrid optical/digital system proposed in Ref. [2] was designed to
use the above advantage, as well as the temporal redundancy between

successive image sequences. However, it is not quite spatially adaptive due

to the fact that only the interpolated differential pulse code modulation
(IDPCM) spatial compression system has been used where large movement

greater than the predetermined threshold is involved between image

sequences. Therefore, the above scheme can be greatly improved by
considering the following factors:

(1) An adaptively-coordinated spatial/temporal subsampling and
interpolation between the spatial and temporal compression
subsystems are feasible by using programmable resolution
provided by focal plane detectcr technology.

(2) Motion-detection/estimation schenes could be integrated into
a hybrid optical/digital architecture.

(3) More reliable movement activity measures (image derivative
enargy) [3] could replace the normalized mz2an square errer

(NMSE) of the frame difference, which could be used for the

decisicn mechanisa of an adaptive compression system,

N e —4




(4) A highly perallel digital processing scheme using wmultiple
microprocessors could be integrated into the hybrié
optical/digital architecture in order to offset the slow
processing speed of sequential digital subsystems as opposed
to the high-speed optical subsystem. Also, the problem of
efficient interfacing betwecn the optical and digital
subsystems should not be overlooked.

This paper addresses the above suggestions for the improvement of the
hybrid optical/digital approach for interframe image data compression by

introducing the adaptive decision mechanism based on image derivative energy.

In Chapter II, the state of the art of the adaptive digital interframe

predictive coding is reviewed. 1In Chapter III, we propose the use of ima

To
ge

14
activity measurement for adaptive multimosde coding, which is designed to

integrate high-speed optical processing for the computation of spatial and
temporal gradients and energies, and rflexible dizital processing for
controlling multimode coding. In addition to the system configuration aud
algorithmic explanation, the current technological trends are brieflr
described to justify parallel processing and hybrid optical/digital
processiag.

Finally, the striking similarity between the parallel izage processor in
the proposed adaptive multimode coder and the parallel processcor 2ASM
(partizionable SIMD/MIMD systam) has been pointed out. Thus, it is iaferred
that the parallel hybrid optical/digital processing approach provides a much

broader conceptual frameworx fcr compuier vision svystems. Detailed

architectural consideration will be left for further research.
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1I. ADAPTIVE DIGITAL INTERFRAME FPREDICTIVE CCDING: A REVIEW

There have been numerous excellent surveys concerning digital picture
coding [4-9]. Rather than repeating the above surveys, we selectivelyv
consider the recent development related to adaptive interframe predicrive
coding.

There are various adaptive strategies that have been developed ifor
spatial conmpression algorithms, such as differential pulse code modulztion

(DPCM), etc. The typical examples are adaptive prediction and quartization

approaches. The former is based on the noustationary statistical image

ot

model and assumption, which are more reliable in characterizing the edges or
outline of the real world imeages than the first order Markov image model.
Thus, the prediction error at the edge between the adaptive predictor and

the originzl pixel is made smaller tharn the nonadaptive prediction error.

the insensitivity of the human eve to cthe

rr,

The latter takes advantage o
quantization error. That is, the quantization steps and levels :are
adaptively selected in such a way that the introduced quantization
disﬁortion is not perceptable to the human visual systen.

Interframe compressinn algorithms also take advantage of the temporal
characteristics oI the human visval syscem, in addition to the above spatial
characteristics of human visual perception and the statistical redundancy
represented by an image source model. A recent study [9) on the spatio-
temporal respons2 of the human visual system revealed that, at hich
tewporal frequcncies, spatial contrast sensitivity is reduced. This indicates

'

that the sensitivity of the human visual svstean is low to fine spatial
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detail in rapidly-moving objects, and at high spatial frequencies there is an
overall decrease in flicker sensitivity., For the nontracking task, which is
typical in teleconference or picture phone environments, the human visual
system can tolerate a loss of spatial resolution in the moving area
(reported by Mivahara [10]), These observations strongly suggest that the
interframe coder can classify the parts of the spatial source image
sequences and adaptively apply different efficient coding schemes to themn,
in accordance with the different spatial and temporal resolutions required

by the human viewer for the appropriate visual perception. The simplest

coding schemes are the frame replenishment method using frame repeating-

dropping, spatial and temporal subsampling and interpolatior.

The more sophisticated methods consist of extracting the actuzl motion
displacement between frames. This moticn estimation approach is still in
its infancy and most of the past work has been restricted to two-
dimensional motion, especiallyv translation {9,11]. There have teen four
major approaches to estimating two-dimensicnal translation: (1) the Fourier
method, (2) the method of differencing, (3) the temporal-spatial gradient
technique, and (4) wmatching. In the coatext of TV signal transmissicn, the
latter three have been selected for real-time implementation. The basis of
movenent~coupensated predictive coding is that, if the displacement fizld of
the movingz-image sequence is known, then a very govod prediction of the
currerc field in the wmoving image sequence can b2 obtained by shifting and
interpoiating the parts o the previous field (or frame) which hawve moved

19], This general approach is also simplifled inco two methods for reali-time

implementation. Cre method 1is the Tel-block displacenment
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estimation/compensation technique [12-18] and the cther is the Pel-recursive

displacement estimation/compensation technique {19,20,25].

In the former, the scene is divided into rectangular blocks, and a
zingle shift Iis estimated for each block. The blcck may or may not be
segmented into changed and stationary areas. The previous frame (or field)
is shifted, and interpolated if nonintegral displacement estimates are
allowed, to form the prediction for that block [9].

The latter technique updates the displacement estimate (which may or
may not be obtained by Pel-block motion estimation) at each pixel. This
update is based only on previously transmitted pels, so that no explicit
displacement estimate need be transmitted.

There are two methods for estimating translational displaccments: (1)
the correlation or matching tecnnique {12,13,18], and (2) the temporal-spatial
gradient technique [10,14,17,21,22,23], Givea an object in translational

motion with velocity V=(V|,Vy), the image luminance satisfies

UGE,t) = UlX-V e-tg),tp) (IZ.1)

for an arbitrary reference time tg. In particular, if t is the time interval

between frames

UX,tptt) = UX-Votgl, (I1.2)

where d=tV is the displacement which cccurs in one rrame interval,

E—
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II.1. The Correlation/Matching Technique
The basic idea of this method is to choose d from a set of possible
displacements & to ninimize some measure of the difference between the

current frame and the previous frame displaced by d. Thus, d is the value

which solves

ain L NUX,to+T-U{X-d.tg]] (11.3)
de? XeMA
where MA denotes the moving area and N(*) is a nonnegative increasing
function which serves as a distance measure.
Equation (IL.3) indicates that a large computation is required, since it
should be evaluated for each _d:-:@. Thus, there is a trade-off between
"

accuracy and computational load. In practice, only a relatively small

number of integral displacaments have been used.

iL.z2. he Temporal=~Spatial Gradient Techrique [14,21,22,23]
The standard procecdure to mianimize the difference between U(X,t) and
UX,t)=U[{X-V(t-tg.,tg) is to take the derivative of the squared error

- o]
e=[U(X,t)-U(X,t)]" and equate it to =zero. Since there exists a relation

between the toaporal derivative and the spatial gradient of the wmoving

cbject as sowa in Ref. [24):

= =¥iy U{LL), (IL1.4)
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aprroximating the derivatives by finite differences, we have
a(X,e) = = Veax(X,t). (1L.5)

Thus, tha velocity estimate 15 obtained by choosing V, which gives the best

mean-square fit to (IL.5) over the wmoving area, i.e., which ninimizes

c = boiap(Xe) + veag(X,0)l2, 11.6)
XeMA -

By setting 4yC=0, we obtain

. i . -1 : . -
Vo= ool ) axo o’ Lo e ) ax(X, 0). (IL.7)
XeMs T J. Xeua =

Lin» and Murphy [10,17] have described a simplified version of the above

estimator as follows:

r~ "
l A'r(ﬁ,t) Sign[.ﬁxl(_}_(_,t)/ ‘>_ IAXI(_:—\"t)i
- eMA XeMA
AR =
LAt signlaxz(_:g.c)l/ Lo lexetd {(11.8)
xeMA / XaMa i
L= - ¥l

whe=e X=(X,X, .
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A survey of these two methods is given in Ref. [li!. The gradient
y g g

methods in general require fewer computations than the matching/correlation
technique for a given level of accuracy. This is particualarly critical for
real-time application in image sequence (interframe) coding. However, the
gradient method is inaccurate for large displacements (above several pixels
per frame) where there is a significant anount of detail due to the fact
that the temporal derivative in Eq. (Il.4) is approximated by the frame
difference. This problem can be alleviated by introducing a temporal
recursion. In cther words, the corresponding estimate :or the previous
frame is updatad using the same algorithm with the Pel-tlock displacement
estimation technique, but the frame difference is replaced by the displaced
frame difference. The resulting estimator, called the directional gradieat
method or the Pel-recursive displacement estimation technique, is accurate
and robust to noise for large area translation, but it canno: respond tc
rapid spatial changes in the displacement field.

Netravali and Robbins {19] have proposed a coder in which the H

displacement estimate is recursively updated at a spatially-neighboring
point 2s follows: Given the displaced frame difference, with displaceaent d,
D(X,t,d) = UX,t) - U(X-d,t-1), (IL.9)

and if the obliect has translated by an amount d in cne frame, then

D(X,t,d)=0. The basis of the pel-recursive estimator is to adjust d at each
pel ia order to reduce |D(¥,t,d)!. This is donme by changing d in the

dirccrion of the negative gradient, thet is,
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di = dgi-l - £ g ip(xe,di-11)2 (11.10)

L L 5 YAt J ol
where gi is the displacement estimate at pel i of some scanning sequence.
Inserting Eq. (I1.9) into Eg. (II.10) yields

dl =a1 - ep(xe,di-livguix-d 1 -1}, (IL.11)

Since U(X,t) is defined only at the sampling point, interpolation must be

used to evaluate D(X,t,d) and 94U(X-d,t~t). They found it adequate to use

~

linear interpolation to evaluate U(X-d,t-7), and VXU(X—[EJ,t—t) to estimate

the gradienr, whare [é] is ;.l rounded to the nearest grid point. This
algorithm, where €=1/1024, further reduced the bit rate by 1l to 1.3 bits per
pixel for the disdiaced-frame differeunce with respect to simple frame
differeace. However, the Pal-recursive algorithm has limited spatial
counvergence to ensure stability and is more sensitive to noise.

The Pel-recursive algorithm is also accompanied by the problem of
addressing the moving and stationary areas and coding the movement-
compensated prediztion error in moving areas. Upvon successful movemant
compensation, most of the quantized prediction errors will be zero, thus, use
of efficient run-length coding is justified. Also, since there ars three
gtates (stationary area, insignificant compensatad prediction errors, and
significant compensated prediction errors), an identification £or the state

of the next run length must be provided in addition to the run lengths. An
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alternative to this three-state encoding is to run-length code only
significant and insignificant prediction errors. The decision as to which
prediction to use (i.e., previous frame or displaced previous frame) can be
made by using previously transmitted information, so that no over head
information need be transmitted.

The Pel-recursive displacement estimation has been extended to the
transform domain in Ref, [25]. The algorithm works recursively in such a
way that the displacement estimates are updated from two-dimensicual
unitary transform coefficients to two-dimensional unitary transforn
coefficients. Each image is partitioned into blocks of size N=N_ xN,, to

obtain the N transform ccefficients for each qth block subimage,

Cala) = UTEEq’t}Qn
X = XygXeg)T (IX.12)

where
X = {qu,xzq)T denote the coordinates of the upper left-hand Pel
of the qth block
U[§q.t) = the column scanned vector of intensities of block g
C,(q) = the nth transform ccefficient
¢$pn = the nth linear transform basis vector.

A

Similarly,

Cn(q'g) = UTaq-_-_p_,:—r;ian (11.13)
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(2]

oefficient in the previous displaced frame. When Cr(q) is

is the nth
predicted by C,(q,D), the prediction error is

(IL.14)

C(q,_I;) = Cuhlq) - Cn(qL_I;).

The squared prediction errors are minimized by a steepest descent method.

The resulting recursive formula is

; s € 2 : .
Dn+1(@) = D(@) - 5 p (q)edlaDn(a))

Jones and Rashid [20] have proposed residual-recursive displacement

estimation, which utilizes adaptive estimation techniques to vary certain
parameters of adaptive nybrid picture coding (AHPC) as the statistics of the

image change. 1In AHPC, a one-dimensionally transformed S(k) in‘a raster scan

fashion is predicted by

P
S(k) o oaj(k)S(k-1) + e(k), (IL.13)
i=1
where the predictor coefficient aj(k) is a piece-wise constant. If aj(k) is
estimated, the residual sequence elements are given by
P .
e(x) = 5(k) -~ ; aj(k)s(x-1), (IL.1o)
i=1
the transformed

where e(k) is the difference betw2sn the prediction of

Assunme that the image is divided inzo

picture element and the actual value,
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blocks of Ny rows by N, columns. Then each residual in the present frame

may be represented by

™,
4

en(@) = UF(Xqt)en = UT(Xc.thoq, (I1.17)

wrere UT(Xq,t);n is a linear prediction.

Similarly, the displaced previous frame value for this resicdual is
- . " Tre B \ T/ 1
en(q,D) = U(Xq7D ,t-Tjén - UT(Xg-Dit=T)on. (IL.18)
4 displaced residual difference may be formed by

DRDn(qgi) = eq(q) - ;n(q,6% (11.19)

The algorithm attempts to minimize the squared displaced residual difference

in a residual recursive steepest descent procedure as follows:
~ a € N r ."2 , R
Do+1€®) = Dple) = 5 Tp (@)|DRD(q,D) " (11.20)
This operation may be simplified by

Dp+1(q) = Dnlg) - eDRD{q,Xq) )en(Xq<D,T-1)l. (11.21)

They have shown that this algorithm is more stable in the region ¢ =

4

than the coefficient recursive displacement estimation algorithm.

0™




III. A SPATIO-TEMNPCRALLY ADAPTIVE MULTIMODE CODING UNDER PARALLEL

YYBPID CPTICAL/DIGITAL PROCESSING CONCEPT

IT7.i. Adaptive Multimode Coding Using Image Activity Measure

As discussed in the previous chaptar, the state-of-the-art interframe
coding algorithms have become very sophisticated at the cost of
implementation and svsten complexity. However, the compressed bit rates
remain bevond the capabilities of conventional digital traasaission channels,
such as telephone links. The commen characteristic of most interframe
coding implementation is the need for a2 frame buffer for storing and
smoothing the image informaticn to be transmitted. Since the size of the
buffer is limited by constraints relating to cost and perceptual delay
effects, peaks of =zctivity in the image signal can cause this buffer to
overflow. To avoid this, it is necessary to adapt the coder operation to the
amount of motion, that is, to deliberately degrade the image quality in a
gradual and graceful manner as the image activity increases. Depending on
the desired transmission rate and image quality, it may be possible, under
the conditions of moderate motion, to utilize various psychovisual properties
described in the previous chapter, such as spatio-temporal response, so that
the adaptive strategies do not introduce visible degradations. Nevertheless,
for violent motion, visible degradation may be unavoidable. Therefore,
consideration should be given as to what extent visible degradations can be
tolerated by a human viewer fof the application in mind.

The ideal adaptive strategies should depend oa the actual
characteristics of the image signal which produce the nonuniform information

rate, such as percentage of frame motion, velocity of motion, amount of
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spatiar detall, etc. However, most multimode coders use a single decicion

parameter, i.e., the pufier aemory coceuvarcy rate, which hac alsn been used

under hybrid oprical/digital corrressicn schemes (see Ref. [2}). This has
lead to some degree of success in real-tims multimode interframe codec
=

ion System Committea (NTSC)

[N
(D]

simulations for coding National Televi

[0

monochrome video signals at 1.5 Mbits/sec under minicomputer contrel [26-28].

These can be called a class of multinode coders where M modes of coding
cperatiens, such as were described in the previous chapter, are selectively

applied to a video signal to assure its continuous cperation, to provide the

full availeble resoluticn in the lower mcde, and to introduce the graceful
and progressive degradetion of image quality in the higher mode. The basic
design problam of a multimode cocer is lack of a "genuine” adaptive
mechanism to switch between the higher and lower mode of operations.
Instead of using a buffer memory occupancy criterion, we propose the use of
image activity measures. One measure of image activity that can be readily

ccmputed by an optical prccessor is image derivative energy for spatial and

temporal gradients, as proposed by McCaughey [3].




Ti1.2. Parallel Hybrid Optical/Digital Processing Approach To Interframe

Coding
The use of optical processing for image data compression has been
oriented toward cvercoming the excessive digital processing requirements of
dizitnl imzge bandwidth compressien techniques. The advantages of optical

ocessing of inages are evident in light of current and emerging device

‘,‘
"

technoleogies such as focal plane CCD or CID detectors, spatial light
modulators (PROM, LCLV, high-speed silicon l{thium niobate (SiLiNb)
devices, etc.), multi-mode optical fibers coupled with laser-bzsed optical

omumunication technology, and VLSI technology ernabling the potential

2

recalization of parallel digital image processors. Within this new
technologzical environment, it is fruitful to reevaluate the advantages of
both optical and digital processing for various real-time applications, such
as image data compreesion for TV conferencing, military and/or medical
roblems based on multiple image sequence, etc. The overall goal is systen A
architecture design, i.c., combining advanced optical and digital technologies
tc improve the performance of compression systems.

The viable guideline for hybrid optical/digital system desigrn would be

a full use of parallelism in image processing. The conventional and current

imace transwmissicn systems have been restricted by a seguential, or raster
scanning mode of operation. There is good reason for it in terms of simple,
recal-time implementation. However, it may be useful to reconsider the
available mnodes of operation, from sequential line-by-line to parallel
block=by-block in spatial domain.

Returning to motion-compensated coding algorithms, which are the most

sophisticated that have been developed thus far, it has been noted that they
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suffcr from ewxressive zesarch computation and stability problems. However,

oo c1l the imepe subblocks need motion compensation. Also, the spatial and

w

-
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acdient irformaticn needed for the motion estimation can be easily
coroouted as a low-end oreration by the smar:i senmsor srrays of an optical
processcr. The image sratial/temporal derivarive energies which are used as
a criteria for selectirng an appropriate code are also readily computed by an
optical processer. Finally, the hypothctical multimode coder, consisting of
N subimage bulfers and M wmicroprocessors, can bte viewed as a single-
instruction multiple-data streaw/rpultiple-instruction multiple-data strean
(SIMD/MINMD) pzrallel proccessor. Viewed in this way, the adaptive decision
mechanism can be considered a special-purpose conjputer (software and/or
hardware) interfaced with both optical and digital processcrs, which takes

rom the low-end optical subsystenm monitoring image activities,

n

itnformation
processes themx based on the preprogrammed decision rules, sends out the
instructions to the digital subsystem for multimode coding as to which image
subtlock imaze buffer needs a particular mode of processing by a particular
microprocessor, and generates the overhead information tu be transmitted to
the receiver.

The details of the proposed adaptive multimode predictive coding based

on parallel image pracessing concepts are discussed next.




NL5. Syvstem Confiqura

[l

lon ¢f Adaptive Muitimode Coding
he basic structure that we propese for the hybrid optical/digitel

<

ve muliisode coder is given in F

Zg. 1. The icage cequence is captured
bv a2 “smart scesor” optical prejprocessor that generates the spatial and
venporal gradisnts for eavch subimage tlocke The spatial and temporal image
Jerivazive energies to each subblock zan be computed by either a digital or
an ontical preprocessor. Now the spatial and temporal image derivative
snorgy values for eacn subblock are used for adaptive selection of the
codinz moce applied to that subblock or the temporal derivative and spatial
cradient values at each pel may be used to implement Pel-recursive motion
cmipensation coding on a sequential basis as well,

Tha adaptive decision mechahism thresholds the imeage activity measure
values for each =lock and generates the "instructions” as to what mode of
operation instruction (software program) is loaded into which microcrocesser
and which subimage memory content is fetched fer execution. When the Pel-
blocl: motion ccmpensation algorithm is applied to the particular subimage,
the overhead information about whether the subimage bleck is the stationary
ov nmoving part of the image must be sent back to the adaptive decision
ri- :hanism. 1f the Pel-recursive algorithm is applied, the address
information of the moving pel should be generated on a sequential basis.
Tre adaptive decision mechanism can access the frame buffer for smoothing
ti2 data rate in order to double-check its periformance. Therefore, when
ceon 2ined with the overhead information generator, it is a solely digital
sub.vstem as is, for example, & conventional minicomputer.

Ine parallel image processor consiets basically of N subblocks,

image/frame buffers/memories and M microprocessors. Thus, it is also a




¢igital scubsystem, M microprocessors for image processing can perform P
difierent modes of image manipulations. There are various operations that
can be used for these P rodes, such &s 8-bit PCM, spatizl/temporal
subsampling, frame repeating/dropping, motion compensation coding, adaptive
cuantization, linear aad nonlinear temporal filtering, etc. Given the image
processing wodes, intensive simulation experiments with subjective viewing
should be used to find the approrriate threshold values for the image
activity measures thet can be used for mode sw.tching. In our subsequent
simuleticn experiments, five wmodes cof operation are used: (1) 8-bit ECM, (2)
spatial subsampling (subsampling every two pixels), {(3) frame repeating, (4)
motion-compensation, and (5) temporal filtering.

Finally, the postprocessor or reconstruction processor at the receiving
end is neturally conceived as a digital subsysten that combines the
transcitted piec2s of subimage blocks and treats the possible block

dilscontinuity in the reconstructed image with the aid of the transmitted

overhead information for subsequent display.




1714, Algorichm of the Proposed Adapiive Mulrtimnde Coder
Step 1. Divide the image fields U(X,t} and U{X,t+7) into small
Thus, there are 1024 8%8 subblocks for

subblozks (say, 8%8).

2

wn

P23

5x256 image.
the temporal differences cof the courresponding ith

Jompute
Ux,t) and U(X,t+7), such as UTi(T) =

Step
subblock between fieids
(UK, t+7) = UgX,0)] for i = 1, N = 1024,
Step 3.  Compute rhe temporal image derivative energy for the ith
temporal subblock by using the following formula:
1
FE; = e

fcr the ith subimage.
spatial image derivative energy for the ith

tep 4, Compute the
spatial subblock by using the following formula:

|
for the ith subimage where X = (X;,Xp)

ce. b } 22y (x) ) 2
R T ‘ 82y
= UK =LXy ) - 2Up (KX, + Ui{x1+1,x2}]2

2

+ (U3 0x) Xp=1) = 204 (X)X + Uy (KXo +1))
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Step 5. Adaptive decision-maiing based on thresholding takes place for
each subblock, i=l,...,N (see Table 1), This rule may be
changed, depending on the subjective evaluation tests.

Step €. Generate the overhead information for each subblock i = 1,..,N;
in other words, information about which subblock image i is
processad by a particular operation mode (1) frame repeat,
(2) spatisl subsampling, (3) motion compensation, (4) temporal
filtering, (5) 8-bit PCM , and the address of the moving and
stationary areas in the ith subblock, etc.

Step 7. Reconstruct the block-by-block transmitted mosaic image by
using the overhead information and, if necessary, cosmetically

! treat the block discontinuity by spatial filtering or contrast

adjustment,
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IV. PAFRALLEL IMAGE PROCESSING ARCHITECTURE FOR MULTIMODE CODING: FUKTHER

RESEARCH AREAS

There ave som2 remaining questicens in the parallel image processing
approcch to multimoda coding. They are concerned with how to efficiently
interconnect the subimage buifers/memories with the multimicroprocessors.
The interconnecticn network problem for parallel! and distributed processing
has beeun intensively researched by the computer architecture comaunity
during the past several years. Siegel et al. {29,30] have proposed PASM: a
partitionable SIMD/MIMD system for image processing and pattern recognition.
Figure 2 shows the block diagram overview of PASM. There is a striking
resemblance between Figs. 1 and 2, except for the existence of the overhead
informartion generator, frame buffer and transmission channel. In other
words, the parallel digital image processor in Fig. 1 seems to encompass the
memory storage system, the wmemory management system, the parallel
conputation unit, ind the microcontrollers in Fig. 2. These units are
controlled by the system control unit, and correspond to the digital
decision processor in Fig. 1. Therefore, the same kind of considerations
toward PASM architecture design seem to apply to the multimode coder design
as well.

It secms that the conceptual framework of parallel digital image
processing is not restricted to image transmission, but can also apply more
generally to an intelligent computer vision application. However, optical
computation is uan essential part of preprocessing used in the computation of
the snatio-temporal gradients and energies in the proposed interframe

compressicn scheme, It has also been raised to the sophisticated level of
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digital computation, provid:d that perallel hyorid optical/digicel systems
architecture is practicelly implementable,
In the near future, the performance of the proposed adaptive multimode

coding algorithm and its channel error effects will be evaluated by

simulation experiments done on a PDP 11/70 and on an 125 image processor.

Alsc, if time permits, conceptusl architecture of a parallel digital image

processor for a multimode coder will be compared with PASM architecture.
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Fig. 1. System coanfiguration of adaptive nultimode coding.

Fig, 2. 3Block diagrazs overview of PASM.
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sroadcasting standards, and the sransmission rzte per secons witl 39 frames/sec frare rate
- and 258 pixvels x l38 lines cf sequence oI tie lmages is [.273.« lbits/sec with reascnalbly

It s2s Seern opserveld thas the viiegoonference irmages iavolve :ainl' shall rovement $9
. that the staticnary 3ixels cf "e a-eﬂeecin Zra2re can ke = oea:e £2 recconstouct The nexs
frarme at tihe receiver, and only tie meviag zixels are stransmitted. In other words, e
conditicnal renlenishim ent coding can ke ex:ecte# <9 perforn tetter than Irame-czo-Trame
"'pPC! coding 1n terms of toth NFSE and srafsmission rate.

The typical systen ccmponents ¢f the conciticnal replenisiment coding svstem are
(1) moticn detector or 3:gnificant clhange detestor (2) pixel selester , -ased con s
- aiiress infcrmasicn produced Sy (1), (3) unl‘or: cucntzze: {64 levels), (4) adéress

cocer, (§) fZrame =uffer, and (&) rezonstzu

The essextial par: cf tihe conditioral replenisiment coder is tnhe zction deteczsr or
--3ignilicant change cdetector, which san Le, in general, civided intd tuc categeries: irecs
anc incirect metihods. The dizect metliod is sased cn lahorious calcula:xon cf the velocity
[9‘,.-3] Qr the estimaticn of rotion displacement of a moving »pixel between : eiqhbo:inq

ranes, using a 3 dimensional irmage or field model [l1], (12].These mezhocs are tie cases

‘a- notion estimaz on/con ensation coding whose significantly improved pericrmance has deen

fezonstratad for spe: ‘7y unifcrn translated <displacement by Netravali, et.al {l13] ané
cthers. In ozier ©o ;r: erent ccnditicnal reslenishment inserzfraze ceding cerdined with
TISPCL spatial compression within the fracework of tie aybrid ogrical/digital systex=, an

.nZizect meticd of Jstecting significant change between neighdering fraces by :tireshold-
an -"e Zraze differsnce is 9:e£e:ed to the Zirec:z method in uhic; the velocity and/cr
moticn displacerment are calculated from the pxxel-*o- ixel ojzerzticn. Also, the state of
- bL"e: to smooth moving pixel Jata generated Sy moverent can be used 48 an indirect

ndication of tre significant change. In additicn, NMSE of the Iraze éilference can in-
. .icate movement activity.

E wiehin :?- Srarmevork of hybrid cptical/d;gita’ a:chi:e':u:e; the moticn detector can

‘ e cCesicned as a 'yb:id svesen in waich two --qu-c crvstal ligat valves generate a frare
iffarence image and :tue ‘ccal »lane chazge indection devzce {C2ZD) converts tue <ifference

‘image intensisy into a "gx-all" adizessable signal. Then. the decision raxing needel for

tae adajptive schece can e made by using A microprocessor acting on the cigital signal .
o= s CI0. :

The acdaptive strategies can be incorzoratzed immediaczely intc condizicnal repienishment

coding, which is; indeed, a zextially acdestive schere itself, 2y accormocating several
Fifferens nces. They are as follows:

(1) Aclagtive change of =he :threskold level Zejpending on tie =overnent activie
and c<he buller stasa.

(2) Recduction of spatial and/or semzorel resoluzicn Sy us.ng sudsanmziing or
fiitering. -~

(3) Cuszension cf replenishment Sue %0 large Tnvenens.

(3) Tieli repeating cuas =0 very small oOr 50 rovemens.
Siver tle constraint of the optizally implermented szacsial c-ma-cslzan systen, the
23cve adagptive strategy (2) has & limited umilisy oecause I2PCH is act suite sui-aale oz
tangiag tie spa:;a‘ resol et ion 2£ <lhe Limite? regicsn (zoving a—ea) -3 :he izage. Also,

Rt ;ma,e Tiare~-=0-irage plane cperation ¢f IDFCH makes it inefficient to directly salculate
z=e v'-cc"y 3z soticn d¢s=’acozcn: of si;ni--cantlv acving Pixels as in digital »rocessing.
Taerefore. we adozted an indirecs c:angc datection metlioc using adaptive thresholdling
! cke E:A:c Eifference Lased on tie Suffer s:a:n an< the acdaptive strategy (3) the
ispensicn o2 the replenisiment, o form acaptive hubrid optical/digital IDPCY/eenditional
ten_enisiment interframe consression azshitecture as siown in Tigure 2.

Sizyulacicn exteriments and resu.l

To £ Srrance ¢4 =he lcae ive hrizid ;:;ca-/d.gz:a. 2pCY/
sendisional e Sompressicn architecture. A series of digital snnu;&.:n
sviezinents T : igizal Irage Ana.js;s —azezatery ¢f <le Universizy of
4 wz3na.

The scuzce Zate fzz tis s;:u-a:-cn consiszed cf a seque“.
sOD a sglevisicn croadcasst of Walser Crenkite. The Sranes ar
4e.i8 reso.utidn. wish £ wiczs o: intensity rer ;ixcl.
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Assuming thaz address coding is accurate, no channel coding i:as been used, and no error
Sas Seen adiel to the transmissicn channel, we tave sinmulated tle follcocwing four systex

fcr comparisen ¢f thne cenmrressicn perfsrcmances (fits/sec. with Srame rate ¢f 30 frares/sec)
and izage gualisy.

(A} A nonalaptive conciticnal renlenishrment systen with the 1st fraze transmisted
by 64 level 2Ct.

{(8) A nonadaztive hybrid optical/digical DPC:/cond‘t-ona- re
vith the .st frare trensmitted by IZPCH (ETQ m I, LTI =

Plenisnizent systen
32)
2

Py
&i

(C) An acaztive conditional replernisirent svster with 64 level PCI.

(S} An adaptive nybrid optical/digital ITPCi/cendizional rezlenishrent systes
wITQ = 32).

(EXQ = 2, LT

Tie adasztive strategies are sased on fraze :e?lenish:en: susyension or Irame reveating
depend-zg or. the IDIST of the successive frame difference. In otiher weris, if LIISE of the
rare difference i3 less tian 2.05%; the fraze is —eaeated, ané if (N4SC is =ore than 0.5%,
::e frarme rTenlensiiment is sustenced and only a spatially compressed irage by 64 level PCH
or IZPC (LTUQ = 32, ATQ = 2) is transmittel.

The Dotion fetection strategy consists of frare Cifferencing and iterative thresiolé-
ing ag sicwn in Tigure 3, whose initial thresiold is set as the rmean value of the frare
<ifference ani cne hundrei:th of the variance of the frame ¢ifference is incremated till the

‘paxinur number of moving pixals are detected witlina tile maxizusw suffer size (3220 3ixels)

£or uniform guantizacion.

Table I summarited tle transcission rate (bits/sec), tle average Sit rate jer frarce
(sits/Zzare) and ti.e average .cc:-cssxc per frare zatic. of four sys:ers. Tadie 3 shous
WRICZ. the nurker of m=oving pixels, raz mitted, comzression ratio, ani the nucber of bits
cranstitsed for the rrozosed aiapt;ve ayozid ont xcal/izg-tal IZPClt/condizional redlenish-

Ient sysIem,

Grapgh 1 shows how tie NISI perforrmances of four systems chence along 14 Zrames.

K3
-

In :he aorn -aZajtive scheze, SPCQY sased cund-tzcﬁa- repienisknent syster needs about

2 Rall of cranscmissicn channel ac~~' seeced ¥ PCL Dased oce. And ez, the suiiective
ané o= e::;ve xnaqe cualities o‘ z=e Tecon structed Pictures by both systexs are unhca:cbly
irsaizes v ghost tyre of rnoise or :e: cn biur as shown in Picture 1.1 anéd 1.2, Alse,

as in <he case o‘ dybric cptical/digital ISPC:/Trazs--to-Frame TPCHY coding J7ste, che
astien d-s:lacemen- be:deen neighbcring frames seexs <o te accumulated. 7This could ke cue
25 the fact that the buffer size is limited so that sufficient ﬁu.be: of moving pixels are
a0t correctly deszecsted and transmitied to yield the reliabdle recons: tion at the
ceceiving end.

In tke anacz ive scueme, ir the sace way as atbcve, IDPC: hased condisional replenish-
ent systen needs abcut one third ¢f transmission channel capcci'" neeced by PQM based one.
Cue o he adaptwive strategy: Replenishment suspensicn ctaiken place at the 73h £:lu¢ eill
the 10th frame and the lith frame, the sub:cc’;ve and ob‘ectzvo -maq. qualicies ¢f <he re-
senstructed pictures Sy both systems are excellent as he lich frame ceconszryczion is
saown ﬁ Piozure 2.1, an2 2.2, The worst reconstricted inages are the Sth f.aa.s shown -

isture 2.3, and I.4. Cormparing tie coriginal Sth frams and Lith frame siowe in Pigsture 31.1.
anz 3.:. it tle reconstIucted cnes, it is chserves =lat a so-called ghost effect slightly
legracded tla facial zart sut ot tae saskground Of sie reconstructed izage.

it is notewcrIiy tlhat Tare differesnce soretites tontains ncise in tie statiomary
2rea as siowm in Picture 4.1 This roise can be Ziltered ous in sréer =5 reduce

e fusher of moving Pixels =0 te Suffereld.

conglusions and furtier researcs=:

e have cescrifed an interfzace datza corsression systen uinich uses an adapsl
tracecy Of rezlenisiTent sussension and 2 -z:s/: xal IDPCH spatial scopressicn sciers
'itRin the framework of lvirid sjtical/éi rsaisecture. The rasulss of siis tezporal-
iy aZajztive intsrfrare scopressian si---a.-zn are snocuraging cecause ¢f =ine cverall jood
oceStive ani susiestive impge Tualicty (LIIST w .58 T L,€7%), =te average number 98 =it
er Izame: £i Riits/frame. =le lvc 2Ge SIm3ressicn retio per frame: 15.3¢ . ARZ tie sTans-
ission ra=e wiz: fraze cate 30 Zraces/sec: ..3o% its.

Ters are ssre savicus Zirestisns

snich future researsh in tiais schere siculi se
cinted Tor avamzle. the mocion Zetes:

cn schsre can 28 modified :v filzering she low
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consrast moving areas and the frame-to-Irame noise in the static areas of the picture, or
2y an acdapsive reduczion in the sensitivizy of ths motion detector. The nex:t step of rais-
ing <xe efficie ency and adaztacility of the interirare csﬁpzess.cn systen seexs O ke tle

-

4» Cevelopzent cf the more efficient and real-tire notion cetection Trofessor witain tle frace

i
.

s}

work of hyhzid eptical/digital architecture.

Also, it is worth exari ining the minimur size of tie Zrare buZfer in exder that the
subjecsive image qualisy of the ircage reconstructed Dy tie nonadaptive conditional replen-
isiment coding ia sufficiently good. Usually, the busfer size i3 constrained Sy the 3ro~
gTessing digital remory :ec““o‘ogv and cost $O tiat it may cease to be the maior limiting
faczor to fesign tie interfraze cocer.

Tinallv, it is important to incorporate the effect of address coding and channel coding
snier tie sh.annel erzor.
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Picsture 1.1 Pictuze 1.2 Picturze 2.1

sonasaptive PCM based conditional nonadaptive IDPCH based adaptive PCY based condi-
replenishrzent l4zh Irace conditiona. ceplenishmen: tioral replenishment ldich
reconstsuction 14ty fzame reconstiructicn fSrame reconstruction

Picture 2.2 Picture 2.3 Picture 2.4
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Radiometric and Spatial Transformations

for Image Data Compression

Research Objectives

Adaptive image data compression has been exclusively a digital
processor function because of the nonlinear and space-variant opera-
tions. However, a scanning optical system can achieve geometric
space-variant operations by alteration of the optical system's
instantaneous field of view (IFOV) and/or variation of the path of
the IFOV. Radiometric space-variance can be achieved by the usage
of a programmable mask, e.g., a PROM or liquid crystal. 1In the
research under this task we are exploring the extent to which radio-
metric and geometric space-variance can improve the performance of
a simple non-adaptive optical compression scheme, IDPCM, previously
developed under sponsorship of Grant AFOSR-76-3024.

Appendix Contents:

This appendix consists of a summary of research results on
employing radiometric and spatial transforms, plus a paper on the

theoretical basis for deriving spatial transformations.




1) INTRODUCTION

An optical means for intraframe compression, IDPCM, originally

developed by Huntl? is modified by pre-compression and post-compression

processing. The pre-compression processing takes the form of a rad-
iometric and/or spatial transformation performed on the original image
to produce an image with stationary mean and energy (radiometric) and/
or autocorrelation (spatial), respectively, as defined over sub-blocks
of the image. The post-compression processing is simply the inverse of
whatever transformation that was applied to the original image.

Such a modification to the basic compression step is possibly
a way to lower bit rates for given image quality, or improve image
quality at a given bit rate.

The analysis that follows describes the effect of various rad-
iometric transformations on objective and subjective image quality,
for different compressicn bit rates. A spatial transformation is also

investigated.




2) PROCEDURE

The image used in this analysis is the 128 X 128 pixel, 256 grey
level (8 bit/pixel) Walter picture shown in Fig. 1. The small size is
necessary to keep processing time to a minimum. A 256 X 256 8 bit/pixel
image is also processed for a few of the cases described below, to de-

termine if image size is important.

Radiometric

The general procedure is as follows; the original image is com-
pressed with the IDPCM architecture alone for various values of low
frequency quantization value L and high freguency quantization value
H, to define a set of images that are purely the result of the bit com-
pression. Then another set of images are derived for the same L,H val-
ues as in the first set, but with the further processing steps of
a) performing a radiometric transformation on the image before the com-
pression step and b) performing the inverse radiometric transforma-
tion on the compressed image from part a. The radiometric transform used

is that derived by Strick1and2, namely:

. _ 9% .
g(j.k) = e (F(j,k) - uN] *ug
n

(1)

th _th

pixel,
th

where f(j,k) is the original value of the j ',k

glj,k) is the transformed value of the jth, k pixel,
H N is the original value of the mean determined over each
sub-block of the image (in all transformations described

below, the sub-blocks are 8 X 8 pixel squares; there are

256 of these sub-blocks in the 128 X 128 image used)
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Mg is the new value of the sub-block mean (the same for
all sub-blocks)
oN is the original standard deviation determined over each
sub-block, and
¢ is the new value of the sub-biock standard deviation
(the same for all sub-blocks).

The subscripts s and N refer to stationary and non-stationary,
respectively. By stationary, it is meant that the statistics (namely
mean and standard deviation) of each sub-block after the above trans-
formation will be the same as those of any other sub-block. The par-
ameters of this transformation, Mg and ogs are these stationary values;
they are set by the user. (The parameter o is actually determined by
setting the desired stationary energy, R_; i.e.,

S

og = Rg = ug (2)

- thus it is the energy and mean parameters that are discussed in
what follows.)

This transformation is applied to each sub-block individually;
a blocky image would result if no further modification was made.

Therefore the coefficients u, and oy (one set for each block) are

N
lTinearly interpolated between block centers to yield a smooth image.
An example of this radiometric transformation acting on Fig. 1 is
shown in Fig. 3b, with Hg = 100 and Rs = 12000. The histograms of the
orioinal and transformed images are shown in Figs. 6 and 8, respect-

ively.
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Table 1 lists the various reconstructed images. For given values
of L and H the energy, Rs’ of the radiometric transformation is var-
ijed to determine what effect the transformation hs3 on the compression
process. The transform/compression/invérse transform process for Fig.
3a is illustrated by the sequence of figures outlined in Table 2. The
inverse transformation is simply accomplished by inverting eq. (1);
i.e., solve for f(j.k). Values of L from 2 to 16 are looked at to see
the sensitivity of the low frequency quantization to the transforma-
tion. Note that in almost ail of the transformations, the stationary

mean value is 100. This value is chosen arbitrarily; the primary in-

terest here is to study the effect of a given mean, varying the energy
parameter.

The high frequency quantization value, H, was chosen arbitrar-
ily at first to match the low frequency quantization value, L, as shown
in Table 1. A subsequent analysis (see Figs. 19 and 20) is performed
to isolate the effect of the high frequency value H from the compres-
sion and low frequency quantization processes, and is discussed in the

results section.

Spatial

The discussion above refers to the radiometric transformation.
A spatial transformation, derived by Striddandz, was applied to the
compression process in the same type of way as the radiometric trans-

form; i.e., spatially transform the original image/compress the resuit/

inverse transform the compressed image. The spatial transformation has

the preonerty of normalizing the autocorrelation width of each sub-

block cver the entire image, where again the sub-block is an 8 X 8

pixel sauare. The shape of the autocorrelation functiop for each block
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is approximated by an elliptically symmetric function. The width of
this function is estimated for each block in the vertical and horiz-
ontal directions; from this information each sub-block of the image

is in effect expanded to varying degrees in the horizontal and verti-
cal directions, depending on the original autocorrelation of the sub-
block in the two orthogonal directions. Thus sub-blocks with high cor-
relation (uniform grey areas) are left alone, and sub-blocks with low
correlation {edges) are expanded. Fig. 16 is an example of the spatial
transform used in this analysis. Fig. 17 uses the spatial transform
alone with the compression step, and Fig. 18 uses both the spatial and

a radiometric transformation with the compression step.

NMSE
A quantitative comparison of two images is the normalized mean
square error, or NMSE. It is defined as follows:

IO(F 05,k - f(F,K))¢

NMSE = oK
,zkf(a'ﬂ? (3)
J

where fr(j,k) is the value of the jth, kth pixel of the reconstructed

image, and f(j,k) is that value for the original image. The NMSE
values are given in Table 1 for each reconstructed image, where

Fig. 1 was used as the original image.
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3) RESULTS; RADIOMETRIC

. L =2, H= 2; Low frequency channel; 128 X 128 Walter image

The L = 2, H = 2 case will be investigated first, with regard to
the radiometric transformation. Looking at the compressed image with
L =2, H=2 (Fig. 2) with no radiometric transform applied, the low
frequency quantization is readily apparent by the two level pixel val-
ues; bright pixels correspond to pixel values in the original image
that were above some threshold, dark pixels to those that were below
the threshold. Looking at Fig. 3a (radiometric transform with energy
= 12000 used), a similar quantization of pixel values is obvious, again

due to the threshold imposed. (The intermediate frames, Figs. 3b to

39, used in the production of Fig. 3a will be referred to in the sub-
suquent analysis- see Table 2.) However, in the latter image, the IDPCM
induced bright and dark areas (quantization noise) are uniformly spread
over the image. This is the effect of the stationary transformation on
the original picture plock means, and the two-level quantization. The
amount of this low frequency quantization noise can be seen, looking ’
at the progression of Figs. 4,3a,and 5, to be controllable by adjust- h
ing the parameter of energy, Rs’ from 10,500 to 12,000, to 20,000, res-
pectively. This parameter is ultimately affecting the histogram width
of the transformed image (before compression), and this width af-

fects the position of the uniform, equally-spaced pixel bins in the
uniform quantization step (low frequency channel). This may in fact

be the most important effect of the energy parameter for low quantiza-

tion values. For the case here, two quantization levels, a stight change

ir. the upper or lower limits of the histogram to be quantized causes

tne breakpoint pixel value to change. It so happens that in this image,
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the pixel values of the background wall are very close to this cutoff

value, and their quantized representation is thus sensitive to par-
ticular histogram upper and lower bounds, which, as stated above, are
related to the energy parameter of the transform. (The greater the
energy, the greater the spread in upper and Tower bounds.) Note that
Fig. 4, with its different statistics, has a breakpoint value below
the wall pixel values, and the wall is uniformly bright. See Fig. 7
and Fig. 8 for examples of stationary image histograms (before com-
pression) of Figs. 4 and 3a, respectively (the original image histo-
gram is in Fig. 6}.

Another effect of the radiometric transform is visible. Recall
that Fig. 3g is the reconstructed low frequency frame before the inverse
transform. Applying the inverse transform to this image added to 3f produces
Fig. 3a, the final frame; note the grey levels introduced into Fig. 3a.

Dark areas are made brighter, and vice versa. (This is the inverse

stationary process acting on the block means.)
The effects of the radiometric transformation for the case L = 2,
H =2 in the low frequency channel are now summarijzed:

1) Dark areas of the picture normally lost in the compression step
are brightened (and vice versa), thus the low frequency quant-
ization noise is redistributed more uniformly over the image.

2) The value of the quantization breakpoint depends upon upper
and lower bounds of the histogram, which is related to the mean
and energy parameters of the transformation; notice the dif-
ference between Figs. 4 and 3a.

3) The inverse transform re-introduces a range of grey levels that

are lost in the quantization process.




L =2, H= 2; High frequency channel

The above discussion refers to the low frequency channel; the
high frequency channel is now discussed, with respect to the single
frame, Fig. 3a.

Fig. 3f is the Laplace quantized Fig. 3e; these are intermedi-
ate frames that correspond to Fig. 3a. Fig. 3f is the image added to
Fig. 3g, the interpolated low frequency image, to give the image which
is then inverse transformed to produce Fig. 3a. Note that the quant-
ized image is a poor representation of the high frequency image: the
significant edges are present in the quantized image, but the added
quantization noise is uniform over the picture, degrading the informa-
tion content. Thus, in all the frames shown at H = 2 (L doesn't af-
fect high frequency quantization), the high frequency channel contri-
butes little information to the final picture. Note that in the L = 2,
H = 2 sequence (and in other sequences), the high frequency noise is
visible in the background.

To determine the number of quantization levels needed to render
an accurate high frequency image, H was varied from 2 to 4 to 6 to 8,
in the compression of an untransformed picture that was very similar to
Fig. 3e. The significant results are in Figs. 19 (H=4), and 20 (H=8).
The subjective fidelity of the quantized high frequency image becomes
acceptable at H = 6 (this image, not shown, is almost identical to
Fig. 20). The effect of low high frequency quantization levels should
be kept in mind in the discussion of the subsequent frames (when H is
less than 6).

Quantitative comparison

The normalized mean square error, or NMSE, is the quantitative
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comparison of the original image with the reconstructed image. The

- NMSE of Fig. 2 and Fig. 4 are .131 and .069, respectively; an improve-
ment of 50% is apparent (see Table 1). As the energy parameter in-
creases above 10,500 (see Figs. 3a, 5), so does the NMSE. The reason
the NMSE is lower in the transformed images is evident by noting that,
in the untransformed image, much of the wall area of the picture has
been discarded due to the low frequency quantization step; however,
the transformed image has a more unifc:mly represented wall (depending
on the particular pixel distribution that determines the quantization
breakpoint). Also, the inverse transform adds grey levels to the image
(corresponding to the grey levels in the original), which tends to

improve the NMSE.

Again increasing the energy from 10,500 (Fig. 9) to 12,000 (Fig.

10) shows the alteration of the image that is characteristic of the
shift in the breakpoint values. Now, however, four levels of quant-
ization, thus, three breakpoint values, are being used in the quant-
ization. The value of the center breakpoint is close to the single
breakpoint derived for the two level quantization, thus the wall pixel
pattern resembles that of Fig. 3a. Qualitatively, the quantized nature
of the untransformed image, Fig. 11, has been removed in Fig. 9. Quant-
jtatively, there is a corresponding reduction in the NMSE of the two

images, from .024 to .016, respectively.

L=28,H=28

Here again, the quantized nature of the untransformed image, Fig.

12, is smoothed by the radiometric transform producing Fig. 13; however,
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the NMSE shows virtually no change, form .004 to .003, respectively.

L = 16, H = 16

There is virtually no change in using the radiometric transfor-
mation for such a high low frequency quantization (L=16), as seen by
comparing Fig. 14 (untransformed) and Fig. 15 (transformed). The NMSE
is the same (.005) for both cases. The low value for H (=2) indicates
that all of the information present is from the low freguency chan-
nel; the high frequency channel noise can be seen superposed on the
image for both cases. It is interesting to see how much information
is present in the low frequency channel. Subsampling at a coarser rate

may be worthwile in reducing the bit rate for such high values of L.

256 X 256 Walter image

The 128 X 128 Walter image was used in the above sequences, to
reduce computing time. Two 256 X 256 images were studied with L = 2,
H = 16, to check for consistency, and gave results similar to those of

the 128 X 128 images described above.

Spatial transform

Preliminary results of the spatial transform shown in Fig. 16 for
the L = 4, H = 4 sequence are Figs. 17 and 18. Fig. 17 is the result of
the spatial transform alone; Fig. 18 is a combination of the spatial
and a radiometric transform. The results show little effect due to the
spatial transform used; a more radical spatial transform is probably

required.
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4) CONCLUSIONS

A.

Radiometric transformations seem to work best (qualitatively)

to improve compressed frame quality for low frequency quantiza-
tions of 4 and 8 (i.e., L=4, L=8),

Breakpoint values in the uniform low frequency quantization step
are sensitive to image stactistics (namely, lowest and highest
pixel values), and thus change with different radiometric trans-
formations. Such changes cause dramatic (image dependent) changes
in the final reconstruction; e.g., the wall pixels in the Walter

image.

. Quantization noise introduced by the compression is more uni-

formly distributed over the image when the radiometric transform

is applied.

. The inverse radiometric transform re-introduces a range of grey

levels that are lost in the quantization process.

. The high frequency Laplace quantized image contributes little to

the final reconstructed picture for H less than 6.

. The spatial transform (warp) tested did little to change the

quatlitative value of the compressed image,.




5) FUTURE WORK

A.

. Add spatially uniform random noise to the warped image before

113

Improve low frequency quantization algorithm; uniform quant-
ization appears too crude. The radiometric transform may produce
a histogram whose low freguency duantization can be optimized
(e.g., Laplacian, Gaussian). If not, can the radiometric trans-
form be taylored to produce an optimum histogram shape?

Try subsampling at a coarser rate in the low frequency channel

when the low frequency quantization number is large; say L greater
than or equal to 16.

Try more radical spatial transformations to provide a better tesg/
for this type of transform; also determine the effects of coars-

er sampling rates used in conjunction with spatial transforms.

the compression step, subtracting the exact same noise after the
compression; this will reduce contouring, at the price of a gran-
ular image. Applying the inverse warp may then reduce the effect
of the granularity in image areas effected most by the warp (i.e.,
areas of low correlation).

Combine spatial and radiometric transformations,

-
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17
18
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TABLE 1
Mean Energy
100 12000
100 10500
100 20000
100 10500
100 12000
100 11000
127 43000
100 10500

: List of Figures

Description

original

IDPCM alone
IDPCM,radiometric
IDPCM,radiometric
IDPCM,radiometric
histogram of Fig. 1
histogram of Fig. 4
histogram of Fig, 3a
IDPCM,radiometric
IDPCM,radiometric
IDPCM alone

IDPCM alone
IDPCM,radiometric
IDPCM alone
IDPCM,radiometric
spatial only
IDPCM,spatial
IDPCM,rad,,spatial
high freq. quant.
high freq. quant,

.131
.090
.069
.119

.016
.023
.024
.004
.003
.005
.005
.039
.019
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TABLE 2 : Intermediate Processing Steps of Figure 3a

Step Figure Description
1 1 original
2 3b radiometrically transformed Fig. 1

(mean = 100, energy = 12000)

3 3¢ subsampled Fig. 3b
4 3d uniformly quantized Fig. 3¢
5 3e high frequency of Fig. 3b (derived from

subtracting the linearly interpolated Fig.
3¢ -not illustrated- from Fig., 3b)
3f Laplace quantization of Fig. 3e
3g linearly interpolated Fig. 3d
not illustrated the sum of Fig. 3f and Fig. 3¢

O 00 N O

3a the inverse transform of the above image;

the final image




6) REFERENCES

; 1) B.R. Hunt, "Optical Computing For Image Bandwidth Compression:

Analysis and Simulation", Applied Optics, Vol. 17, pp. 2944-
. 2951, 1978,

2) R.N. Strickland, "Transforming Images Into Statistically Sta-

tionary Behavior", submitted for pubiication.




117

Figure 1 Original Image

Figure 2 IDPCM Alone
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IDPCM, Radiometric

Figure 3a

Figure 3b-
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Figure 3f
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Figure 3¢

Figure 4
IDPCM, Radiometric
mean = 100
energy = 10500




Figure §
IDPCM, Radiometric
mean = 100
energy = 20000

Figure 6
Histogram of Figure 1
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Figure 7
Histogram of Figure 4

Figurf 8 .
Histogram of Figure 3a
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Figure 9
I1DPCM, Radiometric
mean = 100
energy = 10500

Figure 10
IDPCM, Radiometric
mean = 100
energy = 12000
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Figure 11
IDPCM Alone

Figure 12
IDPCM Alone
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Figure 13
IDPCM, Radiometric
mean = 100
energy = 11000
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Figure 14
IDPCM Alone




127

mean = 127
energy = 43000

Figure 15
IDPCM, Radiometric .

Figure 16
Spatjal Only
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Figure 17
IDPCM, Spatial

Figure 18
IDPCM, Radiometric, Spatial
mean = 100
energy = 10500
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Figure 19
Laplace Quantizer with H = 4

Figure 20
Laplace Quantizer with H = 8
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ADAFTIVE DATA COMPRESSION BY TRANSFORMATIONS FOR GENERATING STATIONARY STATISTICAL IMAGE MODELS

Recin N. Strickland

Sisita. Image Analysis Laboratory and Optical Scisnces Center, University of Arizona, Tucson, USA

=. _INTRODUCTION

The stacistical behavior of images is of fun-
damental importance 1n many areas of image
processing. Incorporation of a priori statis-
tital knowledge of the spatial correlation of
an image, for example, can lead to consider-
arle improvement in many image restoration
algorithms. The recent trend in nonstation-
ary restoration techniques (1), {2) has been
pazalleled by a similar shift in data compres-
sion schemes, from spatially nonadaptive
ilferential puise code modulation (DPCM) sys-
tems to adaptive DPCM systems where the coef-
ficients of the optimum predictor are tuned to
the lccal statistical behavior of the image.
The superiority of spatially adaptive schenes
1s now well supported (3).

The foregoing evidence in support of using
nonstationary statistical image models leads
us tO pose the following: suppose we turn
the problem around--spatially transform or
warp an image so that it possesses stationary
statistics before feeding it to a nonadaptive
process, such as nonadaptive DPCM or the non-
adaptive Wiener filter--and then use the
reverse warp transformation to restore the
original image geometry. We might then ex~
pect 0 see improved performance from those
imace processes that assume stationarity.

In a previous paper, Hunt (4) proposed the
use of nonstationary statistical image models
in data compression. Schemes were outlined
for the measurement of space-varying image
parameters and implementation of image varp-
ing using hybrid digital/optical hardware.
The present paper represents a continued
effort toward developing zransforms for gen-
erating statistically stationary images. Our
emphasis will be on the application of such
transforms for enhancing the performance of
DPCM data compression, although we also in-
tend =5 investigate their 2ains in image
restoration applications. Throughout the
paper we use digital simulation to test the
transformations, although we anticipate that
ditimately they can be implemented optically.

2. CONDITIONS FOR STATIONARY STATISTICS

We are concerned with generating images pos-
sessing wide-sense stationarity, involving
only first- and second-order moments (5).

For a two-dimensional image £(x,y), these are
the mean and autocorrelation statistics,
respectively

fix,y) dxdy n

.x(x.y) - .
N ..
Ry (Xey,i,0) = L(x,y) ixes, yon)
‘N
. dxdy. 2

Here the subscript N denotes that the moment
statistics are measured in local neighbor-
hoods. For the digital case, the conditions

for stationarity of the process £(x,y} in the
wide-sense are as follows:

1 H;l H:l (%)
iy (3ok) = - T £(5 —
x' w2 380 xS0 N
= constant (3)
and

y M=l M-l
R (3, k,z.8) = = 7 T f£i5.:

M2 j=0 k=0

x f£{j+r, k+s) = RN(:.s).(4)

In other words, the means of the neighborhoods
N are constant, and their autocorrelation
funetions have constant lag parameters. M is
the dimension of a square neighborhood. 1In
Eq. (4), an autocorrelation matrix with dimen-
sions (2M=-1,M) is sufficient due to redun-
dancy inherent in the real and even function.
This property further allows us to specify

the autocorrelation by four unique profiles
shown in Figure 1 and designated as NS, NE,
EW, and SE as points on the compass.

The spatial variance of the imace statistics
is reflected by the spatial variance of the
mean and autocorrelation. In the case of the
mean, we have a single number for each neigh-
borhood. Somewhat more complex is the auto-
correlation which, being a function of space,
is characterized by its energy, width, and
shape. Hence, a total of four parameters may
be used t5 describe neighborhood statistics.
aceording to our specifications for station-
arity given in Egs. (3) and (4), any varia-
tion between the parameters for all neighbor-
hoods will result in nonstationary behavior.

3., THEORY OF TRANSFORMATIONS FOR

3.1. Mean and Mean-Square Energy

Congider the case of a square neighborhood N
of £{4,k) consisting of M2 pixels. Ve assume
that uy and Ry(0,0) are initially nonstation-
ary with respect to other neighborhoods. In
general, we anticipate that stationary sta-
tistics will be generated by a simple linear
transformation in intensity of the form

g(i,k) = AL(§,k} + 8. (5)

The conditions for stationarity in g(4,k) are
expressed as

1 M=l M-1

= . . g(3.k} = g (6a)
M¢ i=0 k=0

1 M=1l M-} .

= . 9(j.x)~ = R.(0.0) (6b)
Mi =0 k=0




where .s and Rg{0,J! are stationary values.
Scivang Egs. (3) and (6: for constants A and
E vields,

(7a)

L 2. (0,07
A Srs. s ! ‘] =
L'x' - Ryi0,0) ]

gstationary standard deviation
nonstationary standara deviation

«©

2

(7}

Egquations (5) and (7} combine to give the
cransformaziorn for stationary mean and mean=-
sguare energy, Or stationary mean and vari-
ance:

J
gis,k) = =2 [E(5,k} = ugl + (&)

z

Zquation (8) represents a filtering algorithm
chat is :dentical %o an algerithm developed
f2r the spat:ial contrast enhancement of
images (6).

In practice, E3. (8) will generate images
sontaining intensities that fall outside the
availatle dynamic range of the original image,
in our case § bics, or gray levels 0 to 255,
Negative data are obviousiy impractical for
optical implementation. Furthermore, we wish
t> restrict the upper cray level limit to 255
sc as not = contradict our ultimate aim of
data compression. We will therefore redefine
«he zransformation in Eq. (8) to accommodate
the éynamic range constraint: 0 £ g(i,k) s
2%5. Tne new transformation is

gl = {13,k =~ L] - L, {2a)
where
k = £ 1£9 2 g(4,k) S 258 (9b)
N
otherwise

255 - s
kK = minimum vm—,a?—v—r
LEiae ‘Nomax

*?Tf':%zr'*-f"'] t9)
[ “Nimin

where [2(3,k)~unimax and [£(j,K)=unlmin are
the maximum positive-going and maxaimum
negative~3oing vAriations (about the mean),
respectively. By definition, Eq. (9) will
generate .mages with stationary mean and
approximately stationary mean-square energy.

3.2. Autocorrelation Shape

In section 2 we characterized the shape of
the autocorrelation by four unique profiles.
Clearly, transformation to stationary behav-
10r requires that we assign some kind of model
to each profile or. alternatively, a model
for the autocorrelation as a whole. An image
£:eld 18 considered %0 be a good fit to a
¢irst-order Markov process for which the cor-
relation between individual pixels is propor-
tional to their geometric separation (3). We
choose %0 neglect the diagonal profiles in
Figure 1 and define an elliptically symmetric
form of the autocorrelation,

Rys * RN(z,O\ = constant ..xp[-:nsxs ]
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Rgy = Ty 6,71 = conmszant \exp[7a£w.ﬁ..
(10)

wheze Ryg and Rzy are the profiies in orthog-
onal North-South (vertical) and East-West
{horizontal) directions respectively.

Stationary autocorrelation width along a par-
ticuiar directicn is produced by normalizing
each nonstationary :, measured in tne same
direction, to some value cg. It is logical

to equate g with the minimum value of :,
corresponding ¢o the highest correlation.

The correlation widths are subseqguently nor-
malized by a resampling (interpolation) of the
image data by a factor E, given by

£
g . (11)
s
Ey is therefore the expansion factor (along a
given directicon in the image) required to
transform the autocorrelation width oy of a
neighborhood N intoc a stationary value cg. The
two-parameter model given by Eqs. (10) gives
rise to expansion along orthogeonal directions:
Enys and Epwy. We derive methods for perform-
ing local spatial expansions in section S.

4. APPLYING TRANSFORMATIONS
TOR STATIONARY STATISTICS

4.1. Test lImage

Figure 2 shows the 256 x 256 pixel 8-bit
"Walter" image on which we base our results.
The statistics are visibly nonstationary.

For example, examining contiguous blocks of
16 x 16 pixels, we find that the means range
from 13 to 203, and the mean-squares range
from 172 toc 43386. The global mean is 90,
with dynamic range from 9 to 249. For most
of the results to follow we will consider
neighborhoods of 16 » 16 pixels, giving a total
of 256 contiguous blocks throughout the test
scene. The resolution of local statistical
behavior is not optimum at this block size
since, since ideally we would like to resclve
single edges in a block.

4.2. Mean and Mean-Square Energy

We recall that the basic transformation to
produce stationary mean and mean-square en-
ergy is given by Eq. (8). Applying dynamic
range constraints gave a practical transform,
Eq. (9). Before applying this we need to say
something about the effects of noise. Let us
assume for algebraic simplicity that any noise
present is additive, with zero mean. We can
write the noisy image as

£'(3,k) = f£(3,k) + n(3.k), (12)

which, when substituted for £(j.k) in Eq. (8)
gives

¢
9(3.k) = ﬁ (203.k) « AG3.K) = uy] + u,.

(13)

From Eq. (13) we can see that the noise term
is amplified by the factor o4/0y. Ideally,

we want the noise to remain in the background.
In practice, we can partially attain this goal
by rewriting Eq. !13) as follows:

gi3,k) = K[£'(3,k) = un] + ug (14)

where

e d
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Jonstant T s a threshold related tc the rme
noise level -p assuming chat £(*,k; and
ni:,k: are uncorrelated random var:iables,

, set=:ng T = :p. ¢ would de equivalent tc
saving: .f the Ims signal variations are
less or egual =0 the estimated noise, do not
azzemp: =c egualile the mean-square anergy,
5z variance. Instead, adiust only the mean.
The same chresnhold condition on K can also
ze applied to Zgs. (9), giving:

gizokl o= RISUILK) - g+ s
where

= 2 if 0= g3,k & 255,
N

otherwise
255 - -s .
K = |minimum  spreeppo——
- (SR '!\“max
rr—— (15)
L3R Tenimin

when -y ~ T eand
K = 1
when -y & T.

Figure 3 shows the test image after =rans-
formation using Eg. (15) with #g » 127 and
g = 165, eguivalent to a stationary mean-
square of 43386 (as original imace). We use
Sp = 3 as cur noise estimate. The final
image would have exhibited discontinuities
at the borders betwaen neighborhoods if we
had used single values of uy and oy for each
block of 16 « 16 pixels; instead, we use bi-
linear interpolation between neighborhoods
to provide unigue values for every pixel,
The result is a zontinuous image. Alterna-
tively, we could have measured .y and sy in
neighborhoods centered on all 256 < 256 pixels
in the test image, obviously at the expense
of increased computation. In Figure 3, the
mean is constant at 127 (measured in 16 » 16~
pixel blocks), and the mean-square energy
ranges from 16,000 to 26,000. We may con-
clude that the image is stationary in these
statistics <O a good approximation. The
deviati.ons in the actual mean-squares about
tne intended value of 43386 are due to the
noise thresholding and dynamic range con-
straints.

4.3. Expansion Maps for Station
Autocorrelation 55223 2

In section 3.. we discussed the principles of
equalizing autocorrelation shape in neighbore
hoods by performing localized direction-
dependent expansions. After transformation
to stationary mesn and variance, the auto-
correlation functions of contiguous 16 * 16~
pixel neighborhoods are computed. Least-
squares f£it values of :yNg and gy are com-
puted, corresponding to the autocorrelation
profiles in orthogonal dirsctions (defined

in Figure 1. The minimum values of - for
each direction from all neighborhoods are
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usec to Jenerate two values ¢f expansion for
each neighoorhhod, as folliows:

. N o« = —=_ (1)
(Y] b 2 X
&sm;n '“m;

r
NS
n

(Note: the neighborhood subscript has been
omicted from Eg. (16} for the sake >f clar-
ity.) Figures 4a and b are maps of Exs and
Eew cerived from the trangformed image in
Figure 3, in which each value of expansion is
representec by a block of 16 < 16 pixels with
uniform gray level. The data are scaled to

8 bits, corresponding to the range of expan-
sion values.

5. IMAGE WARPING BASED CM EXPANSION MAPS

We now address the problem of perfocrming geo-
mezrical warping to accommodate each one of
<56 local expansions. A general approach is
to assume an m-order polynomial model for the
spatial distorzion, giving,

m m-l i4
- v 7 ‘s 4
P ito j;o aljx y (17a)
m m=l .
q = . o B, .xtyd, (175
i=0 jmo -3

where (p,g) and (x,y) are coordinates of the
two spaces (warped and unwarped, or vice
versa since the transformation can take place
in either direction).

A method for deriving the polynomials is pro-
vided by superposing the expansion of each
neighborhood individually, with the constraint
that the influence of each expansion on the
relative geometry of other neighborhoods
should be minimized. The technigue we have
developed is based on control point grids.

5.1. Control Point Mapping

Methods of using control points in similar
geometrical rectification and warping appli-
cations are well documented (7,8). 1In our
case, we define a regular grid of control
points whose coordinates coincide with the
corners of each square neighborhood, giving,
for the previous example, a total of 17x 17
control points. Our problem is to determine
how this regqular grid in the original image
space is redistributed by the complex inter-
actions of local expansions centered on each
neighborhood. As mentioned above, we begin
by determining how the grid is affected by

a single expansion applied to the first
neighborhood. We then apply a second expan-
sion to the second neighborhood, and so on.

Each single expansion has two components Eyg
and Egw, acting in orthogonal directions,
shown in Figure S. The region to be expanded
is contained within a circie of radius d/v3.
Expansion Causes vector displacements at a
point (i) lying on the circumference af this
circle a. sording to the following:

-] [-
P = o costEn,, q = —iune-ENs.

' Y (18

Outside the circle, for example at point (ii),
the transformations in x and y are

p = -% cost: (Egyml) + x (19a)

v

—
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We see Zrom Egs. (18) that the four ne:ighbor-
aoed ceatrel peoants lying within the circle
are expanded by Exs in vy and Egw it x. The
wwo-3:mengional sransformation does not pre-
serve the original geometry ©f the remaining
neicnborihoods. We can see intuitively that
o 4c so 18 impossible. 1In the following
secz1on we describe a technique for reducing
the mutual interference of local neighborhood
expansions.

3.2. Iterative Control Point Mapping

We have extended the preceding method of suc-
cessive expansions to incorporate correction
faczcrs to offset the effects of nonlocalized
expansions. In Figure 6 we define the geo-
metrical terminclogy for neighborhoods of
arbitrary shape. The expansion components

in this schenme are defined as

- ‘ng ‘rw )
s T T B ot T (20

The iterative algcrithm for control point
mapping then proceeds as follows:

Notataon: '
Ne:ghborhoods: N, ,N-,...,Nagg
Desired
expansions: (E,.,En) 1/ (ByarBpl)2sees
Measured ’?S ?w ?S ?w
expansions: ‘5§s'ssw’1"Eus'zzw’z""'
(EngEpw) 256
Algorienm:
Step 1 . R
Measure (E,.,E...); for N;.
Step 2 NS TEW S

Apply corrected expansions /By
Egy./Egy, O Ni. Bys, By, ¢

Step 511 | ,

Measure (ENS,Epw)iss for Nagg
Step 512 ,

Apply expansions Eng -¢g/ENS256.

Egw.ss /EEW 258 tO Nags ) )
Return to Step 1, repeat for I iterations.

In the above we are applying correction fac-
tors Eng,Egy to the desired expansions Eyg,
Egw. The effectiveness of the algorithm 1is
measured by the convergence of the rms ex-
pansiorn errors measured at the end of each
iterazion. In Figure 7 we have the warped
controi point map for our previous two-come-
ponent expansion data after nine iterations.
Figure 8 shows the converging rms error
curves. There is apparently littlie to be
gained by continuing beyond nine iterations.

5.3. Control Grid Interpolation

At this point we have two sets of control
points; the first, a regular grid in origi-
nal unwarped image space: the second, a
severely warped grid that will ultimately
establish the geometry of a stationary image.
The guadrilateral vertices (control points)
map directly to the corresponding squarce
vertices. Interior points are mapped accord-
ing to interpolation based upon the mapping
of the vertices. We use local mapping,
based on small sets of neighboring control
points. For example, we can express three-
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point mapping between triancles as

P = a; - a;x + ay,
(21)
3 = b = biyx + by

In Egs. (21) we create two sets of three lin-
ear equations in the same number of unknowns
by specifying that the vertices of a :triangle
map intc the vertices of the corresponding
figure in warped space. Solution of these
egquations leads to the mapping coefficients

a and b. Global warping based on two sets

of 17 x 17 control points is therefore achieved
by computing 32 » 22 polynomial transforma-
tions that are applied individually to corre-
sponding neighborhoods.

Although up until now we have talked in terms
of (p,g) being warped space and (x,y) being
unwarped space, in actual fact we derive the
transformations after reversing the definie
tions. Hence, for each integral coordinate
in (x,y) in cutput warped space, the trans-
formations tell us where to look in unwarped
{p,q) space, 1If, as is the general case,

the ccordinates (p.q) are nonintegral, then
we have to resort to gray level interpolation
t0o generate an output pixel. Bilinear inter-
polarion of the four nearest neighbors is
satisfactory. By defining the direction of
the transformation from warped to unwarpad
space, we make the task of pixel interpolation
easier.

Figure 9 shows the warped image derived by
three-point spatial trnasformation of the
intermediate image in Figure 3, based on the
control point map in Figure 7. It is inter-
esting to note that noise-smoothing by low-
pass filtering would now cause relatively
less blurring of visually important edges due
to the spatial expansion of such regions.
This is obviously a simple example of the ad-
vantages of processing stationary images.

6. CONCLUSIONS

¥We have discussed transformations for produc-
ing images with wide-sense stationary first-
and second-order moment statistics. These
transforms are reasonably straightforward tou
derive and to apply. We note that the in-
verse spatial transformation is simple to
accomplish since it involves only switching
the roles of the two sets of control peints
when implementing Eq. (21). Optical imple-
mentation of forward and reverse spatial
transformations in intensity in Eq. (15) by
optical means is less obvious: it may be
necessary to resort to hybrid digital/optical
technology. Further work will be directed

at testing the effactiveness of stationary
images in DPCM data compression, compared with
nengtationary images.
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Figure 9. Image with wide-sense stationary
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